
UNCLASSIFIED Copy No: ____

C4I Branch

Guidebook for Software Metrics

October 1995

UNCLASSIFIED

ii

CONTENTS

 Section Page

LIST OF TABLES III

LIST OF FIGURES III

1. INTRODUCTION 1

1.1 Scope 3
1.2 Selection Criteria 4
1.3 Organization 4
1.4 Applicability 4
1.5 Reporting 7
1.6 Acknowledgments 7

2. BACKGROUND 8

2.1 Why Use Software Measurement 8
2.2 Software Measurement Process Concepts 8

3. SOFTWARE MEASURES 12

3.1 Software Size 15
3.2 Software Complexity 23
3.3 Software Schedule 34
3.4 Software Development 38
3.5 Software Testing 43
3.6 Software Builds 47
3.7 Software Defect Reporting 50
3.8 Software Effort 57
3.9 Software Problem Resolution Effort 61

4. REFERENCES 66

APPENDIX A : ACRONYMS 70

APPENDIX B : TERMS 72

APPENDIX C : SOFTWARE DEFECT REPORT GUIDELINES 74

APPENDIX D : OBJECT-ORIENTED METRICS 81

INDEX 83

iii

 List Of Tables Page

Table 1-1 The Metrics 2

Table D-1 Object Oriented Metrics 71

 List Of Figures Page

Figure 1.1-1 Metrics/Phase Coverage 6

Figure 3-1 Metrics Template And Field Descriptions 13

Figure 3-2 Generic Life-Cycle Metrics Graphical Report Form 14

Figure 3.1.2-1 Software Size 18

Figure 3.1.2-2 Function Point Monthly Report 21

Figure 3.2.2-1 Average Software Unit Complexity 26

Figure 3.2.2-2 Average CSCI Complexity 27

Figure 3.3.2-1 Software Schedule 36

Figure 3.4.2-1 Software Development Progress 40

Figure 3.4.2-2 Software Development Progress (Object-Oriented) 41

Figure 3.5.2-1 Software Test Progress 45

Figure 3.6.2-1 Software Build Progress 49

Figure 3.6.2-2 Software Class/Build Progress 52

Figure 3.7.2-1 Software Defect Reports 55

Figure 3.8.2-1 Cumulative Effort 60

Figure 3.9.2-1 Cumulative Average SPR Resolution Effort 63

Figure 3.9.2-2 Closed SPRs 64

Figure 3.9.2-3 Valid SPRs By Phase Found and Category 65

1

1. INTRODUCTION

The software engineering metrics presented in this document are intended for Contracting Office
Representative (CORs) and managers of acquisition, development, and support projects within
NRL’s C4I Branch. The metrics have been chosen to provide insight into common project
issues/questions concerning how well program and project objectives are being met. The
metrics, summarized in table 1-1 below, can be organized into three areas based on the
objectives they address.

Resources: This area includes metrics that address issues/questions about cost control,
schedule development, personnel allocations, and accuracy of estimation models.
Examples of questions addressed within this objective are:

- How much do size estimates change over a period of time during the
development?

- How does the trend of size estimates effect resource allocations?
- What does actual cost and schedule data imply about the validity of underlying

estimation models?
- How does productivity related to reused software compare with productivity of

newly developed or modified software?
- How is productivity related to the specific implementation language?

Examples of strategic objectives within this objective area include control software
development and maintenance costs; improve accuracy of cost, effort, and sizing estimation
techniques; efficient allocation of personnel resources; and understand how effort is being
spent in each stage of the development or post-deployment software support (PDSS); and
understand how computer resources (e.g., CPU timing, memory) are being expended.

Quality: This area includes metrics that address issues/questions about the quality of
products being produced and the quality of the processes used to produce the products.
Examples of questions addressed within this objective are:

- Are test plans/procedures adequate to exercise program segments?
- Are expected problem report densities reflective of recorded program

complexities?
- Are modules sufficiently cohesive to promote reuse and to minimize side

effects?
- Does the complexity level of the design/implementation support maintainability

goals?

Examples of strategic objectives within this area include the ability to increase customer
satisfaction; to reduce defects; to reduce rework; to develop maintainable systems; and to
improve development and PDSS processes.

Progress: This area includes metrics that address issues/questions about the development
and PDSS status of a program. Examples of questions addressed within this objective area
include:

- Is the contractor meeting commitments on time and within the prescribed level
of quality?

- What is the true (objective) progress of the effort?
- Are schedule and forecasts to completion realistic?

2

- Are functional allocations shifting from earlier to later builds?
- Are planned productivity rates being achieved?
- Are levels of rework having an impact on progress?
- Is requirements instability having an impact on progress?

Examples of strategic objectives within this area include the ability to increase timely
delivery of systems; to increase stability of requirements specifications; to improve
interface specification processes; to improve Software Unit-level development and PDSS
processes; to improve software CSCI/system-level test processes; and to improve the
software build processes.

Table 1-1. The Metrics

 Objective Area Strategic Objective Metric Purpose

Resources Reduce software Size Track changes in the
development and magnitude of the
maintenance costs, software development
improve accuracy effort
of cost / effort / sizing
estimation techniques, Update/tune software
efficient allocation development estimation
of resources models

Reduce software Effort Monitor total number
development and of staff-months / staff-
maintenance costs, hours expended
improve accuracy on the project
of cost / effort / sizing
estimation techniques,
efficient allocation Update/tune software
of resources, understand development estimation
how effort is being spent in models
each stage of development

Quality Develop maintainable Complexity Track development
systems organization’s ability

to maintain an
acceptable level of
complexity at the
Unit, and
CSCI level

Maximize customer Software Track development
satisfaction, minimize Defects organization’s ability
defects, improve to test a system based
development/support on program
processes, minimize requirements
rework

3

Table 1-1. The Metrics (Continued)

 Objective Area Strategic Objective Metric Purpose

Maximize customer Problem Monitor cumulative
satisfaction, improve Resolution effort required to
development/support Effort resolve problem
processes, minimize reports (rework)
rework

Progress Maximize timely Schedule Track development
delivery of systems, organization’s ability
improve development to maintain the
/support processes development schedule

by tracking the
delivery of planned
software packages

Maximize timely Development Measure the
delivery of systems, development
improve Unit-level organization’s ability
development and/support to keep Unit design,
processes coding, test, and

integration activities
on schedule

Maximize timely Testing Measure the development
delivery of systems, organization’s ability
improve CSCI/System-level to maintain testing
test processes progress

Measure efficiency and
effectiveness of test program

Maximize timely Software Monitor the
delivery of systems, Builds development
improve software organization’s ability
build processes to test a system based

on program
requirements

1.1 Scope

Currently, the set of metrics address a limited number of issues and strategic objectives. There is
an emphasis on progress metrics that highlight deviations between monthly planned and actual
values as well as an emphasis on metric presentations that highlight trends. Such metrics and
presentations should help stimulate COR-contractor discussions, leading to early identification
and resolution of potential management problems. Many of the metrics also reflect work by the
MITRE Corporation [SCHULTZ 88], recommendations by the Software Engineering Institute
(SEI) [PAULK 91, ROZUM 92], and recent experiences in the use of such measurements by
industry/academic [GRADY 94], [LORENZ 93], [LORENZ 94].

The metrics are not limited to specific parts of the software life cycle. They can be applied
during initial software development as well as post deployment software support (PDSS). While

4

the terminology used in this policy is characteristic of a classical DoD waterfall development
approach, the metrics are not limited to such an approach, but, rather, are applicable to different
development paradigms (e.g., iterative, prototyping, risk-oriented, spiral). Figure 1.1-1 is a
summary of when the different metrics are applicable in terms of classical MIL-STD initial
development activities -- System Requirements Review (SRR), System Design Review (SDR),
Software Requirements Review (SRR), Preliminary Design Review (PDR), Critical Design
Review (CDR), Test Readiness Review (TRR), and Physical Configuration Audit (PCA). In
Figure 1-1.1, testing activities are assumed to be quite varied. There can be Software Unit
testing to verify unit correctness, Computer Software Configuration Item (CSCI) integration to
verify interfaces and interaction among the CSCIs, and system-level testing to verify
software/hardware interfaces. Complete descriptions of the initial project life-cycle activities
and milestones used here can be found in [MIL-STD-498].

1.2 Selection Criteria

Formalization through the SEI of metrics collection and analysis as a key component of a mature
software development environment has led to a significant rise in the number of potentially
useful measures published in the literature. Although many show promise, the empirical data to
demonstrate their value within a product development is still sparse. Consequently, many of
these measures are not included in the report but were included in Appendix D for general
reference. Filtering of this report was based on the following criteria:

 • Must be straightforward to collect
 • Must provide a foundation for future definition/evolution of metrics
 • Analysis must be susceptible to automation support
 • Terminology/metrics must be development model independent
 • Value must be demonstrated by practice

1.3 Organization

There are three remaining chapters. Chapter 2 contains background material for managers to
effectively use the metrics defined in Chapter 3. Chapter 4 is a list of the references used to
generate this report and is a source for additional readings. The four appendixes contain a list of
acronyms, definitions of terms used in the document, guidelines for the construction of software
defect reporting forms and metrics of potential interest to uses of this report but not meeting the
selection criteria established in Section 1.2.

1.4 Applicability

The metrics described in Section 3.0 are generally applicable to all projects. Within a metric
category, however, selection of particular measurements may be dependent on such program
characteristics as development approach (functional vs. object-oriented), estimation model
assumptions (SLOC vs. FP), or application (expert system, data base, etc.). At the beginning of
each project, program managers should specify metrics and graphs to be required of the
developer. Although tailoring the application of the metrics may be reasonable, it is expected
that the core metrics of Size, Effort, Defects, and Schedule be retained. Examples of potentially
useful tailoring are:

• replacement of schedule progress metrics with similar metrics collected on predecessor
projects,

• replacement, deletion, or consolidation of development milestones,

5

SRR SDR SSR PDR CDR TRR PCA

DEVELOPMENT
PROGRESS

SOFWARE
SIZE

SOFTWARE
SCHEDULE

DESIGN
COMPLEXITY

TEST
PROGRESS

BUILD
PROGRESS

SOFTWARE
DEFECTS

EFFORT

PROBLEM
RESOLUTION
EFFORT

POST DEP

Figure 1.1-1 Metrics/Phase Coverage

6

• redefinition of terms (e.g., staff-month, source line of code),

• adjustment of triggering or upper control-limit guidelines,

• level of application (e.g., CSCI vice Unit-level, tracking cumulative problem resolution
effort for “critical” problems only, monitoring test progress data for critical CSCIs)

1.5 Reporting

Requests For Proposals (RFPs) and Laboratory tasking should specify the metrics to be collected
and reported upon, the reporting period/frequency, and the delivery formats (toolsets and
platforms). Some examples of statement of work materials are:

“The developer shall provide software metric plans in accordance NRL C4I Guidelines for
Software Measurement, dated October 1995.

“The set of metrics shall comprise:

• Size
• Effort
• Complexity
• Software Defects
• Problem Resolution Effort
• Schedule
• Development
• Testing
• Software Builds

“Specific reporting/graph formats, triggering levels, and other tailorable metrics data shall
be determined during program planning stages, documented in program planning
documentation, and presented for review/approval at initial program planning reviews.”

“The developer shall describe the processes used to collect and validate the metrics data in
program planning documentation or in the Software Development Plan.”

“The developer shall present updated metrics and graphs at monthly business or technical
meeting as appropriate. Cumulative metrics and graphs shall be delivered to the
Government at least one (1) week prior to the meetings.”
“Metrics and graphs shall be maintained, produced, and delivered using Microsoft Excel on
a Macintosh.”

1.6 Acknowledgments

The principal authors of this report have been James Hager (ARL), Louis Chmura (NRL),
Richard Chen (ARL) and Roland Isnor (ARL).

7

2. BACKGROUND

This chapter provides background information for C4I s/w development managers to understand
and use the metrics defined in Chapter 3.

2.1 Why Use Software Measurement

A software measurement program provides project managers with a systematic method of
measuring, assessing, and adjusting a project’s software approach using objective, quantitative
data. Without a software measurement program, it can be difficult to:

• understand the current status of a program along its many, related dimensions: cost,
schedule, personnel, requirements, quality, maintainability, etc.

• identify and resolve problems in a timely manner

Organizations with successful measurement programs report the following benefits [GRADY
87], [GRADY 94]:

• Better insight into product development

• Capability to quantify tradeoff decisions

• Better understanding of new technology impacts

• Better planning, control, and monitoring of projects

• Better understanding of both the software development process and the development
environment

• Better understanding of performance on past projects

• Identification of areas of potential process improvement as well as an objective
measure of improvement efforts

• Improved support for maintenance goals

• Improved Government/contractor communication

Additional benefits include improved quality and more timely delivery of software products.

2.2 Software Measurement Process Concepts

Rozum [ROZUM 92] identifies five key components to an effective measurement program:

1. Defining clearly the software development issues and questions and the software
measures that support insight into the issues/questions.

2. Collecting, validating, and understanding the measurement data.

3. Converting the software measurement data into graphs and tabular reports that support
analysis of the issues.

4. Analyzing/correlating the measurement data to provide insight into the program issues.
5. Using the results to support program decision making, to identify new issues and

questions, and to ultimately implement process improvements [HUMPHREY 89].

8

Basili and Weiss [BASILI 84] recommend establishing measurement goals/objectives prior to
identifying issues/questions. Example objectives might be, “Characterize project software
defects,” and “Evaluate the success in constructing easy-to-change software.” Once the
measurement objectives are established, they can be used to develop issues/questions to be
answered by the measurement effort. Example questions might be: “How quickly do we resolve
defects on the average?”, “Are we getting better at defect resolution?”, “Do changes tend to be
confined to single components?”, and “What is the average effort in making a change?” A
software measurement program that carefully identifies objectives and relevant issues/questions,
and then collects measurement data based on these, should prevent unneeded and excessive data
collection while still providing information needed by managers and technical staff.

Once the issues/questions are identified, then required metric data and data categories must be
defined. For example, for the case of “effort for making changes,” it is important to define what
kinds of personnel hours will be accumulated. If there is a desire to differentiate between simple,
modest, and hard changes in terms of effort, then such categories need precise definition. For
certain metrics, definition help is available. For example, Goethert et al. [GOETHERT 92]
provides guidance for establishing a definition of effort; Park [PARK 92] provides guidance in the
area of source line of code (SLOC) counts.

Collecting measurement data often requires that a data collection form be developed and used.
Without the use of forms, it would be necessary to rely on people’s memories and constant re-
examination of project deliverables and engineering notebooks. Ideally, data collection forms
should be kept brief and should be given a trial run before extensive use. Once established,
however, project management should require everyone use the forms. And, because metric data
collection is often a people process, contractor management must make periodic checks to ensure
correct, consistent, and complete measurement. For example, Unit Development Folders [MIL-
STD-498], should be sampled periodically to ensure that personnel are counting source lines of
code (SLOC) consistently with definitions recorded in the contractor’s software development plan.

In general, metric data needs to be presented as time-based plots [GRADY 87, CHMURA 90].
The graphs should include support for reporting of “raw” measurement data, annotations
highlighting discrepancies between actual and expected data, and multiple development/support
stages. Organizational techniques that can help the program manager understand and analyze the
measurement graphs include [SCHULTZ 88]:

• Partitioning the data to highlight particular differences (e.g., graph by organization,
language, CSCI).

• Adding data sources on measurement graphs and reports. Knowing the source and date
of the data will help program managers interpret it.

• Adding program major milestones on the graphs to support context analysis. To better
understand how the data being reported impacts or relates with the overall development
process, major milestones and stages should be consistently annotated on the time axis
(SRR, PDR, CDR, TRR, initial development, post deployment software support, etc.).

• Reviewing changes in plans or methods to determine applicable comparisons. Graphs of
progress-oriented metrics should include the original baseline along with the currently
approved plan and actual data.

Typically, analysis of measurement data must involve all levels of the program
management/technical staff in an integrated effort to improve project performance. Measurement
data needs to be provided by the contractor, then processed and analyzed by both the contractor

9

and the government. The contractor should be able to use the data to manage its own processes, to
adjust development schedules, and to provide meaningful status reports to the government.
Experience has shown that the government must have access to the basic data so it can
independently analyze issues, interpret the results, and apply lessons learned to other acquisitions.

Rozum [ROZUM 92] offers some simple guidelines when using collected metrics.

• Use the measures together with other management information to improve insight into
progress and risk assessment.

• Use the software measurement program only as the starting point for obtaining insight
into program developments. To isolate specific causes of trends indicated by the
measures, it is often necessary to ask additional questions. An important byproduct of an
effective measurement program is the ability to ask the “right” questions.

• Identify and implement changes to improve the program, including any needed
improvements to the measurement process.

There are other common guidelines. One important guideline is not to use data to assign blame,
but rather to help identify and resolve potential project problems. A second is not to become
preoccupied with the metrics themselves and fail to focus on the project performance issues. For
example, if design reviews indicate that a significant number of Software Units are exceeding
program specified complexity levels, a manager should not focus on the procedural logic of the
affected Software Units. Rather, the concern should be with a contractor’s internal design review
process that does not filter high-complexity Software Units. A third guideline is to realize that
engineering processes and products are dynamic and subject to change. Requirements become
better defined: cost, performance, and schedule estimates are refined; additional personnel,
hardware, test, and support resource requirements are identified; and insights from the measures
are gained. This will result in some metrics showing significant differences between plans and
actuals. Such differences may merely show that a contractor is responsive to evolving program
needs (of course, too much change could indicate that the process is not stable or that the
requirements are not well understood). A fourth guideline is to expect that, as project
measurement data is better understood, it will become apparent that not all data collected is useful
because the items are outdated, there is low confidence levels in the validity of the data, or the data
are inconsistent with other data items that are considered to be accurate or valid. As the issues
evolve, the program manager may need to adapt the measurement process (generally not the
fundamental measurement definitions) to address the changes.

10

THIS PAGE INTENTIONALLY LEFT BLANK

11

3. SOFTWARE MEASURES

This chapter defines a set of nine metrics for project managers to measure, assess, and adjust a
project’s software approach using objective data. Collecting, analyzing, and correlating the
recommended data will help project managers understand the following aspects of a program
development:

• requirements stability
• staff allocation/stability
• development progress
• adequacy of test program
• product quality
• product maintainability
• level of rework
• adequacy of internal review process
• project effort/spending profile
• project productivity assumptions
• accuracy of size estimation processes
• accuracy of cost/schedule models

The metrics are described using a standard template, that includes the following sections:
Category, Purpose, Input Data, Tracking Period, Frequency of Collection, Usage, Triggering
Guideline, Action, Special Definitions, and Notes. Figure 3-1 provides an example of the
metric’s templates and a description of the content fields. The Category field corresponds with
the objective areas described in Chapter 1. Triggering guidelines identify metric limits, which if
exceeded, warrant the attention of project managers. Each template-based description is
followed by guidelines on effective use of the metric and by one or more sample time-based
graphical presentations of the measurement data.

The metrics can be collected and graphed over the periods of coverage described in Figure 1.1-1.
Although the milestones identified in Figure 1.1-1 are reflective of MIL-STD-498 development
standards, sampling periods and associated descriptions are activity-specific should be tailored to
support project reporting goals. Figure 3-2 provides the generic graph format selected for
reporting measurement data. The format for the graphs is flexible and includes support for
reporting of “raw” measurement data, annotations highlighting discrepancies between actual and
expected data, and multiple development/support activity periods. For example, measurement
data collected in the development stages should be merged with post deployment software
support (PDSS) data to provide a complete life-cycle profile. The frequency of monitoring is
dependent on the size and duration of the project, the life-cycle model selected, and the specific
program activities, and should be determined at project startup. For large projects or project
activities spanning multiple years, monthly reports are appropriate. For projects of shorter
duration, weekly or biweekly reports are more appropriate.

12

Category: Objective Area (Resources, Quality, Progress)

Purpose: Target goals for collecting measurement data

Input Data: Measurements to be collected each reporting period

Tracking Period: Applicable life-cycle reporting period(s) (e.g., Analysis,
Design, Testing, Post Deployment Support Stage, Full
life-cycle)

Frequency of Collection: Frequency of data collection / reporting during the
tracking period (e.g., weekly, monthly, milestone-
oriented)

Usage: General guidelines for interpretation of measurement
data

Triggering Guidelines: Metric thresholds which if exceeded require project
management action

Actions: Specific actions to be taken when measurement data
exceeds project specific thresholds

Special Definitions: Definition of specialized terms used during metric
discussions

Notes: General information useful for understanding metric
discussions

Additional Questions: Potential project management questions to further
understand the implications of measurement data on
project development goals

Figure 3-1 Metrics Template And Field Descriptions

13

CURRENT REPORT PERIOD : JANUARY

42
39

42

63

24

32

50

55
52

55

3027 26

64

6259

55

29 35

45

25
17

17

40

57

42 44

19

39

0

10

20

30

40

50

60

70

METRIC
VALUE

TRIGGERING REPORT BASED
ON PROGRAM SPECIFIED VALUES

REPORT STATUS REPORT PERIOD

INITIAL ACTIVITY
INiTIAL FOLLOW-ON ACTIVITY
SECOND FOLLOW-ON ACTIVITY

STAGES
1 2 3

CURRENT
REPORT

PERIOD DATA

SECOND FOLLOW-ON ACTIVITYINITIAL FOLLOW-ON ACTIVITYINITIAL ACTIVIT

COMPLETION COMPLETION COMPLETION

1 2 3
STAGES

1 2 3
STAGES

1 2 3
STAGES

TIM

Figure 3-2 Generic Life-Cycle Metrics Graphical Report Form

14

3.1 Software Size

3.1.1 Purpose

Software Size measurements provide CORs and other personnel with an indication of the size
and characteristics of the software being developed or modified. Software size indicates the
amount of work to be done and the number of resources needed to do the work. Initially
software size measurements are estimated in a contractor’s proposal. Subsequently, size
estimates are updated monthly or during major program reviews to compare actuals with the
estimated values. Post delivery size measurements are included in estimation model databases
and updated during maintenance stages.

3.1.2 Description

 METRIC CATEGORY : Resources - Size

 PURPOSE : Track changes in the magnitude of the software development effort; provide
historical data for software cost estimation models.

 INPUT DATA : Estimated New/Reused/Modified Source Lines of Code (SLOC);
Estimated Total SLOC (sum of categories);
Actual Total SLOC (sum of categories)
Function Points (FP)

 TRACKING PERIOD : Full Life-cycle

 FREQUENCY OF COLLECTION : Monthly/Major Milestone Reviews

 USAGE : Sizing measurements recommended in this report are SLOC and FP.
Traditionally, model-based estimation processes have relied on SLOC measurements to
generate software costing and schedule data [VERNER 92]. More recently, FP analysis has
surfaced as a language and application independent estimation approach [SYMONS 91],
[MATSON 94], [HUMPHERY 95], and [JONES 94]. In many cases, it is appropriate to
combine both approaches to more realistically generate cost and schedule data.

Source Line Of Code: SLOC estimates and actual SLOC data, together with the
assumptions from which the estimates were generated, can provide the historical data
necessary for improving the cost and schedule estimation process. Examples of templates
used to record SLOC assumptions are found in [PARK 92]. Sizing templates provide:

• A checklist form that enables project managers to identify the issues and choices they
must address to avoid ambiguity and to communicate precisely what is included and
excluded in the size measurements.

• Examples of how to use the checklist to construct specifications that will meet differing
objectives.

• Examples of forms for recording and reporting measurement results.

Increase in total SLOC or significant migration among SLOC types (New, Reused, Modified)
can lead to schedule slips and staffing problems. Changes in SLOC estimates often result
from a better understanding of requirements. However, significant changes must be
accounted for in schedule and staffing estimates. Visibility within new, reused and modified
code categories must be demonstrated since the potential exists for total code growth counts

15

to remain constant despite significant fluctuations within subordinate code categories. For
example, a 20% growth in new code estimations might be offset by a 20% reduction in
modified code counts, resulting in no total code growth. The problem with this loss of
visibility is the nature of the code types. The amount of effort required to generate new code
is usually greater than the amount of effort to modify existing code. An even greater
discrepancy exists between reused code and these categories. For this reason, it is important
to track on each category, using project-defined triggering levels to highlight the need to
management attention.

Many cost and schedule estimation-model parameters (e.g., productivity, experience, tool
support) are language dependent. SLOC measurements can be partitioned by development
language (Ada, C, C++, etc.) or aggregated by configuration item (CSCI, Software Unit, etc.)
to provide more visibility into potential program milestone or resource problems.

There are no universally correct triggering levels for migration within code categories and
estimated total code counts. Establishment of these levels is project specific and may depend
on such diverse project characteristics as project size, life-cycle phase, or target application.
The 5/10/10% triggering guidelines provide a starting point to investigate the appropriate
values. For more critical CSCIs or Software Units it may be necessary to establish more
stringent values and track on these elements separately. In some cases, it may be necessary
to track code counts for each application language used.

Figure 3.1.2-1 illustrates changes in new code counts that produce total code counts greater
than the triggering level. It is important to note that monthly code counts may fall within
project-specified windows but small, monthly growth may ultimately trigger cumulative
counts. As project efforts transition from the specification and design phases to
implementation and testing phases, estimated sizing data becomes more concrete.
Fluctuations in code counts experienced during the design phases, stabilize during the unit
test, software integration and test, and system integration and testing phases.

Function Points (FP): Another method of estimating software size is function points
analysis. FPs are calculated by counting the number of system externals and internal files.
The five most relevant items that are often counted or estimated in FP calculations are
external inputs, outputs, inquires, interfaces and internal files [HUMPHERY 95].

External inputs are data and/or control inputs entering the external boundary of the system,
causing system processing to take place. Some examples of external inputs are input files,
input tables, input forms, input screens and input transactions. Input files can include data
files and control files while input forms include documents and data entry sheets. Input
screens include data screens and functional screens. Input transactions contain control data,
interrupts, system messages, and error messages.

External outputs are data and/or control outputs that leave the external boundary of the
system after processing has occurred. Examples of this group include output files which are
often data files and control files, output reports, and output tables. Output reports also
include system messages, error messages and printed and screen reports from a single
interrupt.

External inquiries are I/O queries which require an immediate response. Some examples of
external inquiries are interrupts, system calls, and prompts.

External interfaces are files or programs which are passed across the external boundary of the
system. Specific examples include program libraries (e.g., run-time libraries, package or
generic libraries), math libraries (e.g., library of matrix manipulation routines, library of

16

CURRENT REPORT PERIOD : FEBRUARY

0

20

40

60

80

100

120

140

SRR SDR SSR PDR

SLOC (K)

 REPORT PERIOD JANUARY FEB

TOTAL SLOC
NEW SLOC
MODIFIED SLOC
REUSED SLOC

PREVIOUS

130 K
 70 K
 50 K
 10 K

CURRENT

130 K
 85 K
 35 K
 10 K

MONTHLY NEW SLOC VARIANCE EXCEED
MONTHLY MODIFIED SLOC VARIANCE EXC

MONTHLY TOTAL SLOC WITHIN VARI
CUMULATIVE TOTAL SLOC WITHIN VAR

REPORT STATUS

Figure 3.1.2-1 Software Size

17

coordinate conversion routines), common utilities (e.g., I/O routines, sorting algorithms),
shared databases, and shared files.

Internal files are logical grouping of data or control information stored internal to the system.
Some examples of internal files are data files, control files, directories, and databases.

Based on these five areas and the particular method of function point calculation, each count
is multiplied by an appropriate weight and summed to determine the FP count. Examples of
FP counts and their significance can be seen in [JONES 95] and [YEH 93].

Figure 3.1.2-2 provides an example of a FP monthly report. It shows graphical and tabular
counts (initial, previous, and current) for each of the FP categories listed above.

 TRIGGERING GUIDELINE : 5% total SLOC from previous month estimates
10% migration within SLOC categories
10% cumulative total SLOC
10% FP growth within a category
20% Cumulative FP growth

 ACTIONS : Detailed explanation from the developing organization and related discussions
regarding cost and schedule changes.

 SPECIAL DEFINITIONS :

Source Line of Code Instructions created by project personnel and translated into
machine code; includes job control language, data
declarations, and format statements; it excludes comment
statements [IEEE 92];

Estimated new SLOC Newly developed code;

Estimated reused SLOC Existing code used as is;

Estimated modified SLOC Existing code requiring change;

Function Points number of system externals and internal logical files
multiplied by empirically derived weighting functions.

 NOTES : Size is an accurate predictor of the resources and the nominal schedule required to
develop a product. The principal reasons software project managers experience cost and
schedule problems is poor planning [CONSORTIUM 94]. The most frequent cause of poor
planning is poor size estimation. A significant amount of the initial code growth and
migration can be attributed to estimation errors. Estimation experiences have shown size
estimation errors as high as 100 percent [HIHN 91]. More disturbing, reports from the Jet
Propulsion Laboratory shows that only 22% of the surveyed professionals actually used size
estimates in making cost estimates [HIHN 91]. Consequently, the approach taken in this
report focuses on code growth and migration vice quality of initial estimated values. As
developers refine design and implement code segments, significant changes (up or down) in
code counts are expected. These changes should trigger discussions in related efforts (e.g.,
test, documentation, quality assurance) and potential schedule milestone adjustments.
Ultimately, project managers and development personnel use initial and final code counts in
cost models to support future bid rationale and growth discussions.

18

Function Point Monthly R
January

Ext Inputs

Ext Outputs

Ext Inquiries

Ext Interfaces

Int Files

0 100 200 300 400 500

Ext Inputs

Ext Outputs

Ext Inquiries

Ext Interfaces

Int Files

Current Count

Previous Count

Initial Estimati

External
Inputs

External
Outputs

External
Inquires

External
Interfaces

Internal
Files

Initial
Estimation

440 110 190 18 15

Previous
Count

425 120 185 20 15

Current
Count

475 125 175 31 15

Monthly %
Change (+/-)

10% 4% -5% 55% 0%

Cumulative
% Change

8% 13.5% -8% 72% 0%

Summary Table

Figure 3.1.2-2 Function Point Monthly Report

19

Function point estimations correlate well with software development schedule and cost data,
and unlike SLOC, are language and application independent. Once the SLOC-to-function
point ratio for a particular language is determined [HUMPHERY 95], function points can be
used to estimate source code size by multiplying the ratio by the number of function points.

Although not as prevalent as SLOC and FP-based sizing estimates, object-oriented sizing
metrics are starting to appear more frequently in the literature [KIM 94], [LI 93]. Until
models are tuned to correlate object-oriented sizing data with program cost and schedule
data, the empirical base necessary to bid efforts is missing. Consequently, object-oriented
terms (objects, classes, methods, etc.) are usually translated to equivalent SLOC and FPs for
bidding purposes. In the near term, it is still reasonable to use object-oriented sizing data in
monthly reviews to measure relative growth in the related areas, to discuss program rationale
for growth, and to discuss potential impacts to current cost and schedule estimates.

Examples of object-oriented sizing metrics are found in [CHIDAMBER 94], [LARANJEIRA
90], [LORENZ 94], [WILLIAM 93], and [KIM 94]. Examples are:

• number of scenario scripts [sequence of steps made by the system/user to accomplish a
task]

• number of classes
• number of subclasses
• total number of methods in a class (public, private, protected)
• number of methods in a class that are available as services to other classes (public)
• number of instance variables in a class (volume indicator of a class size)

Several object-objected sizing metrics cited in the literature have cost and schedule
implications but are more readily attributed to quality aspects of a system vice estimation.
For example, the number of class variables in a class [Lorenz 94] measures the number of
localized globals, i.e. common objects for all instances of a class. The number of class
variables in a class is certainly correlated with overall program development costs and
schedule but more readily relates to the maintainability of a class.

3.1.3 Additional Questions

Software size has a direct impact on the total development cost and a contractor’s ability to meet
program milestones. Size measurements can be used to help answer the following questions.

• How much do the size estimates change over a period of time during the development
process?

• Are the fluctuations stabilizing in the latter development/test phases?

• How does the trend of size estimates and actual data effect the development process?

• Are trends of estimated/actual sizing data being reflected in testing allocations?

• How does the trend of size estimates and actual data effect the resource allocation?

• Is the ratio of new and reused code changing and what impact is this change on
estimated schedule and cost?

• Are the changes in size estimates consistent with other collected metrics data (e.g., size
vs. cost, size vs. staffing profile size vs. complexity)?

20

• Are specific CSCIs or software units experiencing more severe fluctuations?
• Are migrations from primary to secondary language (e.g., Ada to C) being reflected in

cost/schedule estimations?

Variations in size (increase or decrease) greater than predefined triggering values could indicate:

• Problems in the use or validity of estimating models.

• Problems in the underlying estimation approaches.

• Instability in requirements specifications.

• Problems in understanding the system to be built.

• Unrealistic schedules or productivity.

• Inability to realize expected software reuse benefits.

3.2 Software Complexity

3.2.1 Purpose

The Software Complexity measure tracks the development organization’s ability to monitor
complexity levels at the Software Unit, and CSCI (Computer Software Configuration Item) level.
Major problems that frequently occur with software systems include: 1) the specification of
highly complex designs that cannot be readily understood, and 2) the translation of design
specifications to code implementations that cannot be adequately tested or maintained. Software
Complexity data is collected during Design Inspections (DI), and Code Inspections (CI) points
and reviewed for adherence to program established thresholds. Unit-level complexity values are
aggregated according to formulas specified below to establish CSCI thresholds. Complexity
values exceeding program specified limits or complexity growth above program specified
triggering levels require a reduction of complexity of the individual Units, CSCIs or waivers
based on project guidance.

3.2.2 Description

3.2.2.1 Functionally - Oriented Complexity Metrics

 METRIC CATEGORY : Quality - Complexity

 PURPOSE : Track development organization’s ability to maintain an acceptable level of
complexity at the Software Unit, and CSCI (Computer Software Configuration Item) level
during design, implementation, integration, and maintenance stages.

 INPUT DATA : Design/Integration complexity of Software Units / CSCIs

 MEASUREMENTS : Cyclomatic Complexity
Essential Complexity
Module Design Complexity
Actual Complexity
Design Complexity
Integration Complexity
Global Data Complexity

21

 TRACKING PERIOD : Preliminary Design through Post Deployment Software Support for
each planned activity

 FREQUENCY OF COLLECTION : Monthly/Project Reviews

 USAGE : Data suggests that there is a strong correlation between the complexity of a
program segment and the ability of a development organization to adequately test and
maintain the program segment. Controlling complexity during the design, implementation,
integration, and maintenance phases supports risk reduction goals and reduces life cycle
project costs.

Functionally-oriented complexity measures defined in this report are primarily derived from
measures defined by McCabe [MCCABE 95]. Specific measurement recommendations are
described below.

CYCLOMATIC COMPLEXITY (CC): Cyclomatic Complexity [MCCABE 89] is a
measure of the number of independent paths through a program. Cyclomatic Complexity is
derived from a flowgraph and is mathematically computed using graph theory. It is found by
determining the number of decision statements in a program or program design
implementation specification and adding one [ZUSE 91]. For compound decision
statements, all Boolean paths are counted.

Although Cyclomatic Complexity produces a quantifiable measurement of complexity, there
is no research which has established an absolute complexity threshold for quality software.
In one study [WALSH 79], a system contained a total of 276 modules of which half had a
Cyclomatic complexity of 10 or less, and half had a complexity greater than 10. The average
error rate for the modules in the first group was 4.6 per 100 source statements while the
corresponding error rate for the more complex modules was 5.6. Based on research
[WALSH 79], [MCCABE 89], many organizations set a complexity triggering value between
7 and 10.

Cyclomatic Complexity at any level is computed via standard complexity toolsets.
Complexity toolsets are integrated with standard program design language toolsets, providing
the ability to compare complexity values of the implemented code segments with the values
estimated in design implementation specifications. Other complexity metrics associated with
functionally oriented programming which may be helpful as a measure are briefly
summarized in Appendix D.

Figure 3.2.2-1 and figure 3.2.2-2 are examples of a reporting structure providing visibility for
Cyclomatic Complexity metrics. In this case, the project upper limits for Average
Cyclomatic Complexity were set at 10 for Software Units, and 550 for CSCIs. Cyclomatic
values were determined by selecting the 20% (20% level was program selected) most
complex Software Units. The supporting table indicates that Software Unit complexity has
been managed within the project limits, but the complexity level of the most complex CSCIs
still exceeds the thresholds. Based on many project considerations, this may be acceptable
behavior. However, the table points to program elements where further discussion/analysis is
required. In some instances, based on this analysis, it may be useful to track all Software
Units within the critical CSCIs and report complexity data on separate graphs.

MODULE DESIGN COMPLEXITY (MDC): Module Design Complexity measures the
amount of interaction between modules in a system. Module Design Complexity quantifies
the software integration complexity contributed by a specific Software Unit and is calculated
by summing the number of calls received/made by the Software Unit. The more unique calls
received or made by a unit, the higher its contribution to software integration complexity.

22

CURRENT REPORT PERIOD : FEBRUARY

7

9

8

9

66.5

4

5

6

7

8

9

10

SDR PDR CDR

AVERAGE
SOFTWARE UNIT
COMPLEXITY

 U

REPORT PERIOD

AVERAGE UNIT
COMPLEXITY

JANUARY

8

FEBRUARY

9
SOFTWARE UNIT COMPLEXITY VALUES WITHIN PROGRA

LIMITS

REPORT STATUS

CURRENT REPORT PER

TRIGGERING

Figure 3.2.2-1 Average Software Unit Complexity

23

CURRENT REPORT PERIOD : FEBRUARY

490

600

650

600

460

450

200

250

300

350

400

450

500

550

600

650

700

SDR PDR CDR

AVERAGE
CSCI

COMPLEXITY

 CS

REPORT PERIOD

AVERAGE CSCI
COMPLEXITY

JANUARY

650

FEBRUARY

600
CSCI COMPLEXITY VALUES EXCEED PROGRAM

LIMITS

REPORT STATUS

CURRENT REPORT PER

TRIGGERING LE

Figure 3.2.2-2 Average CSCI Complexity

24

Significant monthly or cumulative increases in MDC indicate growth in interface complexity.
Although some growth in MDC is to be expected during development, all substantial growth
should be questioned during internal reviews. Areas of discussion should include MDC
reduction strategies (e.g., movement of public interfaces to private or hidden interfaces) and
adequacy of related test fixtures where growth is appropriate.

DESIGN COMPLEXITY (DC): While MDC measures the amount of interaction between
modules in a system, Design Complexity is the sum of the Module Design Complexity of all
Software Units in the software architecture. Design Complexity measures the number of
logical paths in a given software architecture and supports the integration complexity
calculation and definition of supporting test cases. DC should be reviewed during internal
reviews and monitored monthly for any growth beyond program specified triggering levels.
Areas of discussion should include specific Software Units contributing to DC growth,
potential reduction strategies, and adequacy of related test fixtures.

ACTUAL COMPLEXITY (AC): Actual Complexity is the actual number of independent
paths tested. It is the number of distinct independent paths traversed during the test phase.
Redundant logic 1) increases apparent path complexity above actual path complexity, and 2)
reduces efficiency of the testing programs by introducing redundant test structures.
Measuring and tracking Actual Complexity improves the quality and maintainability of the
software system design by: reducing overall code complexity, identifying areas of potential
reuse/streamlining, and reducing the number of test structures necessary to adequately test a
code segment. Actual Complexity values should be compared with Cyclomatic Complexity
values to probe for areas of redundant code. Additionally, AC measures should be tracked
monthly to monitor AC erosion during the development effort. Significant increases during
the development of maintenance stages should be reviewed for impact to existing test
programs.

INTEGRATION COMPLEXITY (IC): Integration Complexity measures the amount of
integration testing necessary to adequately test a system. Integration Complexity is the
minimum number of unique subtrees of the system software hierarchy. IC values correlate
directly with overall testing effort; i.e. increases in IC values require commensurate growth
in related test fixtures and provides improved software test effectiveness and efficiency.

GLOBAL DATA COMPLEXITY (GDC): Global Data Complexity is calculated by
counting the number of accesses to globally specified data regions by Software unit. Global
Data Complexity quantifies the complexity of a module’s structure as it relates to global data
regions. Increasing GDC values indicate a growing dependency on global data structures and
should be evaluated for impact on maintenance procedures. Maintenance of such modules is
difficult as the side effects of modifying related data regions directly affects a module’s
behavior. Program development plans should discourage usage of global data region by
monitoring GDC values during development. Increases in GDC values should be discussed
during internal program reviews and GDC reduction strategies implemented where
appropriate (e.g., migration of global data to argument/parameter lists, use of restricted
global data regions, etc.).

 TRIGGERING GUIDELINE : Triggering guidelines or upper control limits (UCL) are
provided for CC and EC measures. MDC, AC, DC, IC, and GDC metrics are primarily used
to scope testing efforts and identify specific test paths. Since there are no meaningful
numerical guidelines for these measures, triggering guidelines focus on growth percentages.

Ten (10) for average Cyclomatic design complexity at Unit
level

25

Four Hundred (400) for average Cyclomatic complexity at
the CSCI level
MDC : 5% monthly, 10% cumulative growth
AC : 5% monthly, 10% cumulative growth
DC : 5% monthly, 10% cumulative growth
IC : 5% monthly, 10% cumulative growth
GDC : 5% monthly, 10% cumulative growth

 ACTIONS : Reduction of Cyclomatic of individual units, CSCIs or waivers based on
project guidance

Identification and removal of redundant code structures

Identification and implementation of interface complexity reduction
strategies

Review of adequacy of associated test structures and schedules

Reduction of global data region dependencies

 SPECIAL DEFINITIONS : Cyclomatic Complexity - maximum number of linearly
independent paths through a module of code

Software Unit Cyclomatic Complexity - number of linearly
independent paths in a Software Unit;

CSCI Cyclomatic Complexity - sum of Unit complexity
plus 1;

Module Design Complexity - number of calls
made/received by a module

Actual Complexity - actual number of independent paths
tested

Design Complexity - sum of MDC of all Software Units in
architecture

Integration Complexity - Design Complexity minus the
number of unique Software Units plus 1;

Global Data Complexity - number of global data read/write
accesses

 NOTES : Other data suggests strong correlation between the complexity measures and the
volume of software changes and the performance of programmers on comprehension,
modification, and debugging tasks. Effective management of the complexity data within a
program requires an engineering life-cycle that provides visibility for these concerns. An
internal review policy, consisting of Design Ready Reviews, Design Inspections, and Code
Inspections, is required to provide timely review and corrective action.

Care must be taken when trading off Unit-level implementation complexity and
Unit-level interface complexity. Arbitrarily, reducing component complexity by partitioning
Software Units into additional Software Units may potentially increase the number of

26

interfaces (and resulting integration and test efforts). Additionally, other issues need to be
considered when evaluating software complexity data [WALSH 79]. Cyclomatic complexity
measures are not sensitive to such issues as common block references, external calls, and
recursive logic (all of which add to the inherent complexity of a program). Conversely,
cyclomatic complexity measurements are overly sensitive to prolonged CASE statements and
IF-ELSE IF structures. A comprehensive complexity program balances complexity data with
well-defined design/code inspections.

Other problems [SHEPPERD 94] encountered with cyclomatic complexity include: 1)
applying structure improving heuristics that lead to an increase in complexity, 2) factoring
out of duplicate code in order to increase modularization which can also increase the
cyclomatic complexity value and, 3) overlooking factors such as data and functional
complexity. It is strongly suggested [GOODMAN 93] that cyclomatic complexity be used
more as control gates rather than as actual measures.

3.2.2.2 Object-Oriented Complexity Metrics

Object-Oriented methods for requirements analysis, specification, design and implementation
provide natural methods for structuring and organizing a model of the problem definition and its
solution. Object-Oriented methods lead to software architectures which are more stable, more
easily maintained, and more easily reused than systems based on functional and data flow
approaches. Key Object-Oriented concepts include:

• Inheritance
• Encapsulation
• Polymorphism

Inheritance is defined as the mechanism by which one object acquires characteristics from one
or more other objects. Encapsulation is a form of data hiding and a technique for minimizing
interdependencies among separately written modules by defining strict external interfaces. In
effect, encapsulation prevents small systemic changes from having massive ripple effects
throughout the system. Polymorphism is the ability for an object to belong to more than one
classification. Complexity metrics are described below for the inheritance and encapsulation
areas as well as cyclomatic complexity metrics applicable to Object-Oriented development.

 METRIC CATEGORY : Quality - Complexity

 PURPOSE : Track development organization’s ability to maintain an acceptable level of
complexity at the Software Unit, and CSCI (Computer Software Configuration Item) level
during design, implementation, integration, and maintenance stages for object-oriented
developments.

 INPUT DATA : Design/Integration complexity of Software Units / CSCIs

 MEASUREMENTS : Inheritance
• Depth of inheritance
• Fan in
• Number of children

Encapsulation
• Cohesion in methods
• Percentage of public/private data

27

• Access to public data
Quality

• Maximum essential complexity
• Maximum cyclomatic complexity

 TRACKING PERIOD : Preliminary Design through Post Deployment Software Support for
each planned activity

 FREQUENCY OF COLLECTION : Monthly/Project Reviews

 USAGE : Object-oriented metrics defined in this report are primarily derived from
measures defined by [LORENZ 94] and [MCCABE 95]. Recommendations for specific
measurement are described below. Additional object-oriented complexity metrics are
described in [CHIDAMBER 94] and Appendix D.

INHERITANCE: The Depth of Inheritance (DOI) metric measures the position of a class
in an inheritance hierarchy or how many ancestor classes can potentially affect this class.
Interpretation of the Depth of Inheritance measure requires a trade-off between the increase
in complexity derived through inheritance of functionality and data and the complexity-
reduction derived from program reuse. The deeper a class is in the inheritance hierarchy, the
greater the number of methods it will inherit, making it more complex, harder to test, and
harder to maintain. But as reusability of a class increases, the value of complexity decreases
gradually because inheritance permits code reusability.

Fan In is the number of classes from which a class is derived. High values indicate excessive
use of multiple inheritance. Systems exploiting multiple inheritance are inherently harder to
test, maintain (side effects) and expand.

Number of children (NOC) is the number of classes derived from specified parent class
and/or the number of immediate subclasses subordinate to a class in a class hierarchy. When
a large NOC exists, it can cause increased difficulty in understanding the relationships among
the objects in a class and lead to increased maintenance cost. The value in measuring NOC is
that NOC indicates the number of classes which will be directly affected by a change to the
parent.

Another factor to consider during object-oriented development is the trade-off between
effective use of inheritance mechanisms and object coupling. Since inheritance promotes
software reuse in an Object-Oriented paradigm, it also creates possibilities of violating
encapsulation and information hiding.

ENCAPSULATION: Encapsulation is the packaging or binding together of related items.
Objects encapsulate their data, making them accessible to other modules through messages or
well defined methods. Encapsulation improves module cohesion and minimizes the
interdependence among separately written modules through abstract interfaces. Objects with
low cohesion are more likely to be changed and are more likely to have undesirable side
effects when they are changed.

The complexity of program is related to number of classes and the number of classes is
related to the degree of reuse of class. The larger the number of classes is, the greater the
efforts of the programmer and the less the degree of reuse of class is. Cohesion of a class is
characterized by how closely local methods are related to local instance variables in the class.
Class size tends to decrease with increasing cohesion of the method in the class.

28

The Lack of Cohesion In Methods (LOCM) metric measures the lack of cohesion of a class.
It is defined as the percentage of methods in a class that do not access a specific data field,
averaged over all data fields in the class.

Percentage of Public and Protected Data (PPPD) is the percentage of data in a class that is
public/protected. PPPD also shows how much of the data within a class is available to other
objects.

Access to Public Data (APD) is the number of times that a classes’ public/protected data is
accessed. APD measures the impact of data that is not controlled by a class.

QUALITY: Quality metrics focus on the O-O extensions to standard cyclomatic
complexity measures. Class-oriented cyclomatic complexity is defined as the maximum
cyclomatic complexity of the methods in a class. Definition and usage of this measure is
described in 3.2.2.1. Maximum values are selected to establish timely discussion of class-
level complexity issues. In practice, it may be more beneficial to use class-average
cyclomatic.

 TRIGGERING GUIDELINE : Triggering guidelines or upper control limits are provided
for maximum (CC). Guidelines levels based on empirical evidence are not currently
available for the other object-oriented complexity measures. Programs should monitor
growth levels monthly and use 5% triggering levels as a mechanism to review complexity
issues.

Ten (10) for maximum (CC)

 ACTIONS : Reduction of complexity of individual Units, CSCIs or waivers based on
project guidance

 SPECIAL DEFINITIONS : class - a template, pattern, or blueprint for a category of
structurally identical items (common behavior, common
relationships, common semantics);

class hierarchy nesting level - depth of a class in an
inheritance hierarchy

encapsulation - a modeling and implementation technique
that separates the external aspects of an object from the
internal, implementation details of the object (also called
information hiding)

fan in - count of the number of other components that can
call or pass control to a component

inheritance - mechanism where one object acquires the
characteristics (attributes and operations) from one or more
other objects

number of children (NOC) - number of immediate
specializations in the form of classes and subclasses

object - a model of real-world physical and conceptual
things

29

object cohesion - a measure of how logically related the
components of the internal view of an object are to each
other

object coupling - describes the degree of interrelationships
among the objects that make up the system

object-oriented - a development technique that uses objects
as a basis for analysis, design, implementation

polymorphism - the property that an operation may behave
differently on different classes

public - an attribute or operation accessible by methods of
any class

private - an attribute or operation accessible by methods of
the current class only

 NOTES : The metrics described above are only a subset of the O-O metrics described in the
literature. Other metrics relevant to the Object-Oriented paradigm are briefly described in
Appendix A.

3.2.3 Additional Questions

Software complexity has a direct impact on a contractor’s ability to adequately test a system.
Controlling complexity supports program risk reduction goals and has the potential to
significantly reduce maintenance costs. Complexity measurements can be used to help answer
the following questions:

• Are test plans/procedures adequate to exercise program segments?

• Are expected problem report densities reflective of recorded program complexities?

• Are specific CSCIs/ Software Units inherently more complex, thus requiring more
program visibility (schedules, specifications, test structures, etc.)?

• Are aggregated CSCI complexity values significant enough to suggest further logical
decomposition of software entities?

• Are inheritance structures too extensive to effectively maintain?
• Do inheritance structures promote unexpected side-effects during maintenance stages?
• Are modules sufficiently cohesive to support reuse and minimize side effects?
• Are data elements sufficiently protected through proper levels of encapsulation?

Variations in size greater than predefined triggering levels may lead to :

• Inadequately tested Units.

• Excessive growth in maintenance costs.

• SPR density not consistent with unit expectations.

• Integration and test schedule / cost growth.

30

• Increased program risk.

3.3 Software Schedule

3.3.1 Purpose

The Software Schedule performance measures provide CORs and development and post
deployment software support personnel with a comparison of actual milestones completed
against established milestone commitments. These measurements quantify the contractor’s
performance toward meeting commitments for delivering products and completing milestones.
The Software Schedule measure tracks the development organization’s ability to maintain the
software development schedule by tracking the delivery of software packages as defined in the
program Work Breakdown Structure (WBS). Estimated schedules are derived by adjusting
current program schedules by a weighting factor based on actual cost of worked performed
(ACWP) vice budgeted cost of work scheduled (BCWS).

3.3.2 Description

 METRIC CATEGORY : Progress - Schedule

 PURPOSE : Track development organization’s ability to maintain the software
development schedule by tracking the delivery of planned software work packages.

 INPUT DATA : Actual Cost of Work Performed (ACWP), Budgeted Cost of Work
Scheduled (BCWS), Current Months in Project Schedule

 TRACKING PERIOD : Full Life-cycle for each planned activity

 FREQUENCY OF COLLECTION : Monthly/Major Milestone Reviews

 USAGE : Use of costing data to estimate schedule progress requires close coordination
between costing staff and engineering/project management. Care must be taken in the use of
cost data to derive schedule information. Confirmation of work performed can be
determined by correlating BCWP data with development, testing, and incremental build
measurement data. Claiming completion of project milestones requires a well-defined Work
Breakdown Structure and associated data dictionary, objective entry and exit criteria for each
event and activity specified in the WBS, and additional progress metrics (design,
development, test, etc.) to substantiate work performed.

Figure 3.3.2-1 provides a sample schedule graph output. During month SRR, the plot
indicates that given the current rate of productivity, project completion will require
approximately 22 months instead of the originally scheduled 18 months. This was
determined by calculating the ratio of worked performed to work scheduled and applying this
multiplier to adjust the project schedule. The chart provides data for the January and
February time frames where February is the current reporting month. January’s data
indicates no improvement in productivity with an approximate four-month schedule slip still
projected (18 months / % work done / % $ expended). However, February data suggests
continued erosion of productivity with 45% work done and 60% of budgeted funds
expended, and a resulting schedule of approximately 25 months. At this point, the schedule
was revised and extended to 22 months, indicating a 4 month slip from the original schedule.

Plots of this form can be used to identify current schedule estimates and extrapolate on
schedule trends. Although minor perturbations are expected, positive slopes above the

31

CURRENT REPORT PERIOD : FEBRUARY

17

26
25

23

2222

22

17

17

22

24

22

10

12

14

16

18

20

22

24

26

28

30

SRR SDR SSR PDR CDR TRR

SCHEDULE
MONTHS

 ORIGIN

 CURRE

 1st REV

REPORT PERIOD

% WORK DONE
% $ EXPENDED
ESTIMATED SCHEDULE

JANUARY

32
40
22

FEBRUARY

45
60
25

BUDGETED WORK COMPLETED TO
WORK SCHEDULED VARIANCE EXCEEDED

REPORT STATUS

CURRENT REPORT PERIO

Figure 3.3.2-1 Software Schedule

32

triggering levels indicate significant risks to ultimate project schedules while negative slopes
indicate productivity control. Although it is not clear at what point it becomes necessary to
formally adjust project schedules, setting triggering levels of 5% for monthly changes in
estimated schedule and 10% for cumulative changes in estimated schedule provides a point
from which to begin discussions. For more critical CSCIs or for WBS elements on the
critical path, it may be necessary to establish more stringent values and track on these
elements with separate graphs.

To determine the stability and progress of the schedule, a summary table [ROZUM 92] in
which for each revision, the date, time since last revision, and schedule change (acceleration
or slip) is recorded may be useful.

 TRIGGERING GUIDELINE : 5% from previous month estimates;
10% cumulative

 ACTIONS : Detailed explanation from the developing organization and related discussions
regarding schedule improvements;

 SPECIAL DEFINITIONS : Budgeted Cost of Work Scheduled - cost estimates for
individual work packages as determined by engineering inputs
and grouped via a Work Breakdown Structure;

Actual Cost of Work Performed - cost actuals for individual
work packages completed as determined by monthly cost
accounting and Work Breakdown Structure;

Estimated Schedule - Project Schedule(new or revised) divided
by (ACWP/BCWS)

 NOTES : Effective use of Software Schedule metrics requires detailed Work Breakdown
Structure and a cost accounting system that allows detailed milestones to be planned and
costing data associated with claimed milestones to be collected.

3.3.3 Additional Questions

Software Schedule measurements can be used to help answer the following questions.

• Are there process activities that are routinely completed late? (Correlate with
development progress metrics.)

• Are the schedule/adjusted schedules consistent with each other and with the Program
Plan and the Software Development Plan?

• Is the number of schedule slips increasing or decreasing through program phases?

Variations in schedule greater than predetermined triggering values could indicate:

• Problems in the use or validity of estimating models.

• Unrealistic schedules or productivity estimates.

• Correct spending profile (BCWS) but significant staff turnover rate.

• Instability in requirements specifications.

33

• Problems in understanding the system to be built.

• Instability of development environment (tools, platforms, etc.).

3.4 Software Development

3.4.1 Purpose

The Software Development performance measurements provide CORs and development and
post deployment software support personnel with a quantitative indication of Software Unit-level
work progress. The measurement uses data on the planned and actual progress of software Unit-
level development (# of Software Units designed, # of Software Units coded/tested, # of
Software Units integrated) to assess whether an activity is complete and the contractor is ready to
proceed to successive activities.

Early insight into deviations from planned Unit-level progress is essential for early corrective
action to be taken. Effective use of these measures requires that the contractor 1) use a detailed
level of planning, and 2) define specific entry/exit criteria for each of work activities being
tracked.

3.4.2 Description

 METRIC CATEGORY : Progress - Development

 PURPOSE : Measure development organization’s ability to keep Software Units design,
coding, test, and integration activities on schedule.

 INPUT DATA : Planned number of Software Units to be designed each month
Actual number of Software Units designed

Planned number of Software Units to be coded/tested each month
Actual number of Software Units coded/tested

Planned number of Software Units to be integrated each month
Actual number of Software Units integrated

 TRACKING PERIOD : Preliminary Design through Post Deployment Software Support

 FREQUENCY OF COLLECTION : Monthly

 USAGE : Associated plots of Software Units designed, coded/tested, and integrated should
show consistent, positive slope. Figure 3.4.2-1 contains a sample graph providing visibility
for Software Unit development progress. Software Unit design begins at or around the
Preliminary Design Phase and continues through the Critical Design Phase. Identification of
the number of Units successfully completing design activities is verified through internal
reviews. Figure 3.4.2-1 indicates that this process was managed effectively until just before
CDR. At that time, the number of Software Units actually designed deviates significantly
from the number planned. Several potential reasons cited for this diversion from planned
design schedules were staff turn-over on key Software Units and evolving requirements.
Because for the affected Software Units, code completion and test was not scheduled until
the latter part of the Implementation phase, this difference did not immediately translate into
Software Unit code and test variances. Figure 3.4.2-1 also indicates that during the current
reporting period, the number of Software Units actually integrated differs significantly from

34

the number planned. The tabular data details that this difference exceeds the 10% window
defined for the project. Slips at this stage of the development probably indicate that the
overall project schedule cannot be maintained. Correlating this data with other project
metrics, may lead the monitoring organization to effect schedule improvements with the
contractor.

Based on the complexity of the project, it may be necessary to plot very large CSCIs
separately, or gather defect density (Section 3.7) information to provide more visibility into
any schedule perturbations. Triggering levels may need to be variable, becoming more
stringent during the integration and test phases. Because an understanding of the real impact
of exceeding project specific windows for Software Unit design, code and unit test, or
integration counts may be lost by tracking only summary counts, it may be more appropriate
to focus on Software Units with the potential to more adversely affect schedules. These
Software Units may include those with the largest number of SLOCs, highest complexity, or
highest associated BCWP.

 TRIGGERING GUIDELINE : 10 - 20% difference between planned/actual; % based on
the number of required Software Units

 ACTIONS : Detailed explanation from the developing organization and related discussions
regarding cost and schedule improvements.

 SPECIAL DEFINITIONS : None

 NOTES : Detailed data needed to generate progress graphs is reviewed at the Unit Design
Ready Reviews, Design Inspections, Code Inspections, and Integration Ready Reviews
[MIL-STD-498]. These reviews also provide the opportunity to collect quality-oriented data
such as defect density from errors found at design inspections, defect density from errors
found at test inspections, etc.

Equivalently, for object-oriented development, tracking the number of objects/methods
designed, developed, and integrated provides early visibility into potential development
schedule problems. For a large-scale, MIL-STD-498 compatible development, the
relationship between objects and units and classes and CSCIs may be many to one.
Consequently, monthly reports may focus on a particular software unit and the related
objects, with triggering levels tailored to the specific unit [Figure 3.4.2-2]. Since the number
of objects may be extensive for a large system, in general triggering levels should be
narrowed to at most 10%.

35

CURRENT REPORT PERIOD : FEBRUARY

470

80

300

100

290

70

110

300

400

470

50

130

350

425

290

30

470

310
300

90

150

470

400

280

65

90

150

470

350

0

50

100

150

200

250

300

350

400

450

500

PDR CDR TRR

NUMBER OF
SOFTWARE

UNITS

P

A

REPORT PERIOD FEBRUARY

UNIT DESIGNED
UNIT CODED/TESTED
UNIT INTEGRATED

PLANNED

470
470
425

ACTUAL

470
470
300

SOFTWARE UNIT INTEGRATION VARIANCE
EXCEEDED

REPORT STATUS

CURRENT R
PERIO

SOFTWARE UNIT
DESIGNED

SOFTWARE UNIT
CODED & TESTED

SOFTWARE UNIT
INTEGRATED

Figure 3.4.2-1 Software Development Progress

36

CURRENT REPORT PERIOD : FEBRUARY

75

150

100

160

200

175

130

100

40

19

25

113
100

45

150

170

200

230230

180

160

120

65

120

200

90

50

30

70

0

50

100

150

200

250

PDR CDR TRR

NUMBER OF
OBJECTS

REPORT PERIOD FEBRUARY

OBJECTS DESIGNED
OBJECTES CODED/TESTED
OBJECT INTEGRATED

PLANNED

230
200
175

ACTUAL

230
200
150

CLASS INTEGRATION VARIANCE EXCEED

REPORT STATUS

OBJECTS
DESIGNED

OBJECTS
CODED & TESTED

OBJECTS
INTEGRATED

HCI CLASS

Figure 3.4.2-2 Software Development Progress (Object-Oriented)

37

Other examples where collection of software development-oriented metrics might prove
useful include [AIRF 86], [DECKER 91], [LANDIS 90], [BETZ 91]:

• number of software requirements in the system-level specifications that are documented
in the Software Requirements Specifications (SRS).

• number of software requirements in the system-level specifications that are documented
in the Interface Requirements Specifications (IRS).

• number of SRS and IRS requirements documented in the Software Design Document
(SDD).

• number of SRS and IRS requirements documented in the Interface Design Document
(IDD).

• number of Software Units with Program Design Language (PDL) completed.

• number of CSCI integration and test procedures completed.

• number of expert system rules designed, developed, tested.

• number of logical data elements defined.

• number of physical data elements defined.

• number of high order language elements developed (e.g., SQL statements, UNIX
scripts).

3.4.3 Additional Questions

To assess whether the planned software development completion dates are achievable the COR /
Program Manager should [ROZUM 92]:

• Ensure that the completion and exit criteria for software development milestones are
well-defined and verifiable (e.g., for code inspections, the internal review is complete
as determined by Software Unit Development Folder signatures, all action items are
closed, and the source code is under configuration management control). If they are not
well-defined, then true progress may be disguised by having work reported as
completed when work still remains.

• Take into account the quality of the completed work items, especially during the
requirements and design phases where problems are less costly to correct [BOEHM
81]. A rough judgment of the quality during these early stages can be obtained by
correlating development progress with quality progress measures. If quality is
questionable, then the COR/Program Manager should consider delaying some early
milestones to ensure a higher quality product.

• Extrapolate the rate of progress (the slope of the actual completed work item curve
between the current report and the last report) to determine if the trend is converging
toward or diverging from the planned completed work item curve. If the actual curve is
significantly lower than the planned curve and the slope indicates further erosion, this is
a cause for concern.

Software Development measurements can be used to help answer the following questions
concerning an engineering process:

• Are there software development processes (e.g., Design Inspections, Code Inspections,
etc.) that are routinely completed late?

38

• Are the schedule/adjusted schedules consistent with each other and with the Program
Plan, Software Requirements Specifications, and the Software Development Plan?

• Is the number of schedule slips increasing or decreasing over time?

• Does the actual performance of the software development indicate schedule slippage
and the necessity of a replanning effort at the program level?

• Do triggering levels need to be adjusted for specific CSCIs or Software Units based on
current trends?

• Are specific units affecting overall program schedules and milestones (e.g., poorly
specified unit interface impacting integration and test schedule)?

Software Development measurements indicating significant (greater than predefined triggering
levels) differences between estimated and actual values could indicate:

• Instability in requirements specifications.

• Problems in understanding the system to be built.

• Instability of development environment (tools, platforms, etc.).

• Inadequate Unit-level review processes.

• Higher than expected test failure rates (correlate with action item counts, SPR density
measures, etc.).

• Significant staffing profile turnover.
• Immaturity of contractor with specific development processes (e.g., object-oriented

vice functional).
• Immaturity of COTS products associated with particular software units.
• Inability to capitalize on level of reuse estimated.

3.5 Software Testing

3.5.1 Purpose

Software Testing measurements provide Contracting Office Representative(CORs) and
development and post deployment software support personnel with an indication of testing
progress. The planned number of CSCI/System test procedures to be executed is initially
recorded in the contractor’s software test plans and procedures documentation. Subsequently,
these estimates are updated monthly during the CSCI/System integration and test phases to
compare actuals with the estimated values.

3.5.2 Description

 METRIC CATEGORY : Progress - Testing

 PURPOSE : Measure development organization’s ability to maintain testing progress.

 INPUT DATA : Planned number of CSCI tests to be completed each month
Actual number of CSCI tests to be completed each month

39

Planned number of system tests to be completed each month
Actual number of system tests to be completed each month

 TRACKING PERIOD : CSCI testing (TRR) through System Testing (PCA) for each
planned activity

 FREQUENCY OF COLLECTION : Monthly

 USAGE : Many projects experience a fair number of failed tests, rework, and associated
schedule perturbations. The extent of the differences between scheduled and completed tests
provide indicators of the CSCI readiness for system testing. Figure 3.5.2-1 is an example of
a reporting structure providing visibility for CSCI/System test progress. The monthly tabular
data indicates that 440 CSCI-level test threads were planned but only 340 were successfully
completed. Based on 10% triggering levels between planned and actual, a CSCI variance
report was generated. Based on the proximity of this report period to the start of System-
level testing, it is doubtful that system-level testing can proceed as planned.

Related issues that surface when interpreting test progress measurement data are the
efficiency and effectiveness of the testing program. Test efficiency is a measure of the
productivity of the testing program. Test effectiveness is a measure of the quality of the
results obtained by the testing program.

Test efficiency is usually measured as a quotient of sizing data and testing effort. Examples
of potentially useful efficiency metrics include: number of function points / testing effort,
number of requirements / testing effort, number of rules / testing effort, and number of scripts
/ testing effort. Test efficiency is primarily used as a historical data point to validate test
schedules and milestones or to support test effort analysis. As program sizing data is updated
during program development, test efficiency data can be used to scope impacts to the testing
effort and determine the realism of resulting schedule modifications. Other efficiency
measures focus on defect identification and the amount of effort required to uncover defects.
Although test stage efforts are relatively fixed based on SLOC/model estimates, the
magnitude of the regression testing program and ultimately the decision to turn over tested
components to the next level of integration testing or to deployments teams should include
defect/cost decisions. Customer/contractor test reviews should include analysis of defects to
cost-to-uncover ratios to determine program value of continued testing.

40

CURRENT REPORT PERIOD : JANUARY

220

500

25

340

475

50

400

150

0

300

25

200

0

320

0

50

100

150

200

250

300

350

400

450

500

TEST READINESS REVIEW

NUMBER
OF TESTS

PHYSICAL CONFIGURATION AU

REPORT PERIOD JA

CSCI

SYSTEM TESTS

PLANNED

440

0

ACTUAL

340

0

CSCI TEST VARIANCE

EXCEEDED

REPORT STATUS

Figure 3.5.2-1 Software Test Progress

41

Test effectiveness measures are customer-oriented and focus on defects found during PDSS
stages. One example of a test effectiveness measure is:

 (#defects uncovered during test)+ (#defects uncovered during PDSS)
 (#defects uncovered during test)

Test efficiency measures may be partitioned according to severity using MIL-STD-498
guidelines for leveling.

 TRIGGERING GUIDELINE : 10% difference from planned and actual test completion

 ACTIONS : Reallocation of resources to address testing deficiencies or reschedule of
system-level test efforts.

 SPECIAL DEFINITIONS : None

 NOTES : CSCI and System-level tests are detailed in Software Test Description and System
Acceptance and Test Procedures or equivalent documentation structures.

For a large-scale, MIL-STD-498 compatible development the relationship between objects
and units, and ultimately classes and CSCIs may be many-to-one. Object oriented
developments may require adjustment of measurements/graphs to provide visibility to the
number of test cases allocated to objects, classes, or subclasses.

3.5.3 Additional Questions

Software Testing measurements can be used to help answer the following questions:

• Are the schedule/adjusted testing schedules consistent with each other and with the
Program Plan and Software Development Plan?

• Are the number of schedule slips increasing or decreasing through CSCI/System test
phases?

• Does the actual testing performance indicate schedule slippage and the necessity of a
replanning effort at the program level (schedule and resources)?

• Do graphs of efficiency data indicate potential schedule and cost problems ?

• Can reworked testing schedules be validated with empirically-based efficiency data?

• Do graphs of defects / cost-to-uncover ratios indicate potential for product turnovers?

• Do triggering levels need to be adjusted for specific CSCIs/System testing based on
current trend?

Software Testing measurements indicating significant (greater than predefined triggering levels)
differences between estimated and actual values could indicate:

• SPR densities greater than expected (correlate with density measurements).

• Instability of test suite (tools, platforms, etc.).

• Inefficiency of regression testing procedures.

42

• Complexity levels for CSCIs higher than project established standards (correlate with
complexity measurement).

• Unit/CSCI interfaces not properly used or specified.

3.6 Software Builds

3.6.1 Purpose

Software Build measurements provide CORs and development and post deployment software
support personnel with an indicator to track the schedule and the number of Units per release in
order to monitor a contractor’s ability to preserve schedule and functionality in each release. The
planned number of Software Units to be integrated in each build is initially recorded in the
contractor’s Software Development Plan and Software Integration and Test Plan. Subsequently,
these estimates are updated monthly during the Unit integration and test phase to compare
actuals with the estimated values.

3.6.2 Description

 METRIC CATEGORY : Progress - Software Builds

 PURPOSE : Monitors development organization’s ability to maintain incremental release
schedule by integrating Software Units.

 INPUT DATA : Number of tested Units per build planned
Number of tested Units per build actual

 TRACKING PERIOD : Software Unit Integration and Test phase for each planned activity

 FREQUENCY OF COLLECTION : Monthly

 USAGE : Many projects experience a significant amount of schedule perturbation at the
Unit-integration level; the tendency is to begin the next level of release testing before
adequate closure of the previous build or to migrate Software Unit functionality to the next
release. Tracking planned versus actuals provides visibility into this level of testing and
replanning based on established trigger points. Figure 3.6.2-1 is an example of a reporting
structure providing visibility for build progress. The planned number of Software Units to be
integrated for each release is indicated on the ordinate axis and the release date is shown by
corresponding abscissa coordinate. Each month the actual number of Software Units
integrated is reported and differences greater than the triggering value are highlighted.
Figure 3.6.2-1 reveals that during the current reporting period (February), Increment 2 and 3
integration goals are lagging significantly behind schedule (325 actual vice 375 planned and
325 actual vice 425 planned). Although the Software Unit releases are internal configuration
items, the potential for CSCI/System-level schedule slips exists. Corrective action may
include reallocation of resources, adjustment of project-level testing milestones, or insertion
of another build (1A) to accommodate continued testing of increment 2.

 TRIGGERING GUIDELINE : 10 - 20% difference between actual and planned integrated
Software Unit

 ACTIONS : Detailed report indicating Unit integration problem areas; reallocation of
resources to address testing deficiencies or reschedule of subsequent incremental build test
efforts; identification of any Unit migration among releases.

43

 CURRENT REPORT PERIOD : FEBRUARY

490

25

410
460

425

600

120
140

170
225

10

85

110

270

365 375
400 410

225

290
250

325

0

100

200

300

400

500

600

CDR

 NUMBER OF
SOFTWARE

UNITS

REPORT PERIOD FEB

INCREMENT 1
INCREMENT 2
INCREMENT 3

PLANNED

225
375
425

ACTUAL

225
325
325

INCREMENT 2 TEST VARIANCE EXCEEDED
INCREMENT 3 TEST VARIANCE EXCEEDED

REPORT STATUS

INCREMENT

INCREMENT

INCREMENT

CURRENT REPORT
PERIOD

Figure 3.6.2-1 Software Build Progress

44

 SPECIAL DEFINITIONS : None

 NOTES : Object-oriented development may require adjustment of measurements/graphs to
provide visibility to integration of objects within a unit, integration of objects within an
increment, or class structures allocated to increments. Figure 3.6.2-2 provides an example of
an object-oriented reporting structure for Software Builds.

3.6.3 Additional Questions

Software Build measurements can be used to help answer the following questions:

• Are the schedule/adjusted Software Unit integration and test schedules consistent with
each other and with the Program Plan, Software Development Plan , and Software
Integration and Test Plan?

• Are the number of schedule slips increasing or decreasing through Unit build releases?

• Does the actual integration testing performance indicate schedule slippage and the
necessity of a replanning effort at the program level (CSCI / System test schedule and
resources)?

• Do triggering levels need to be adjusted for specific CSCI integration testing based on
the current trend?

Software Build measurements indicating significant (greater than predefined triggering levels)
differences between estimated and actual values could indicate:

• SPR densities greater than expected (correlate with density measurements).

• Instability of test suite (tools, platforms, etc.).

• Inefficiency of regression testing procedures.

• Inability to capitalize or reuse within class/structures.

• Complexity levels for Software Units/classes/CSCIs higher than project established
standards (correlate with complexity measurement).

• Software Unit interfaces not properly used or specified.

3.7 Software Defect Reporting

3.7.1 Purpose

Software Defect measurements provide CORs and development and post deployment software
support personnel with an indication of the quality of the test program and the tested
components. It provides managers and development personnel with information on the readiness
of the product to proceed to the next stage of testing or suitability for release. It supports
analysis of the underlying processes used to develop a product through root analysis of problem
report forms.

3.7.2 Description

 METRIC CATEGORY : Quality - Software Defect Reporting

45

CURRENT REPORT PERIOD : FEBRUARY

470
500

450
460440

210
180

100

50

35

180

130

70
10

440

410400

310300

230

290

210

0

50

100

150

200

250

300

350

400

450

500

CDR

 NUMBER OF
SOFTWARE
CLASSES

REPORT PERIOD FEBR

CLASS A
CLASS B
INCREMENT 1

PLANNED

210
400
450

ACTUAL

180
400
400

CLASS A TEST VARIANCE EXCEEDED
INCREMENT 1 TEST VARIANCE EXCEEDED

REPORT STATUS

CLASS

CLASS

INCREM

CURRENT REPORT
PERIOD

Figure 3.6.2-2 Software Class/Build Progress

46

 PURPOSE : Track development organization’s ability to test a system based on project
requirements. Provide a program manager with an indication of the adequacy of the test
program and quality of delivered products. Support analysis of product development
processes.

 INPUT DATA : Number of new Software Problem Reports (SPRs)
Cumulative number of open SPRs
SPR density

 TRACKING PERIOD : CSCI testing (TRR) through Post Deployment Software Support
for each planned activity

 FREQUENCY OF COLLECTION : Monthly

 USAGE : Defects are anomalies noted during the design, development, and testing process.
Software defect data is gathered through SPRs. The SPR density metric provides an
indication of the adequacy of the test program and the quality of the tested product.
Although too few SPRs may indicate code of exceptional quality, more often it suggests a
test program that does not adequately exercise code segments. Too many SPRs may indicate
areas where component quality is unacceptable. A “normal” range for SPR density is
between 10 and 20 per 1000 SLOC. Figure 3.7.2-1 is an example of a reporting structure
providing visibility during integration and test. For the current reporting period, both the
number of open SPRs and the SPR density fall within project limits. If the slope of the open
SPR graph was positive, it would indicate that problems are being identified faster than they
can be resolved. Alternately, if the slope was negative, then it is possible to extrapolate the
graph and project a resolution date. Although it is expected that new SPR counts will rise at
the start of a testing activity, CSCI SPR counts should approach zero as PCA approaches for
any confidence in current schedules.

For more complex systems, it may be necessary to duplicate this graph for selected CSCIs or
provide additional graphs based on the classification of the SPR or the priority of the SPR.

For example, the MIL-STD-498 development standard identifies five distinct problem
classification categories, based on the priority of the problem description. Separate metrics
graphs might be required for each of the categories. For object oriented development, SPR
graphs for objects or class structures may be more appropriate.

 TRIGGERING GUIDELINE : 10 - 20 SPRs per 1000 estimated SLOC

 ACTIONS : Detailed explanation from the developing organization and related discussions
regarding resource or schedule improvements.

 SPECIAL DEFINITIONS : SPR Density - cumulative number of SPRs per 1000 SLOC

Software Problem Report - A document (electronic or hard
copy) used to recognize, record, track, and close anomalies
detected in the software and its accompanying documentation.

Defect - A product’s inconsistency with its specification.
Examples include omissions and imperfections found in the
software during definition, design, implementation, and testing.

47

 CURRENT REPORT PERIOD : FEBRUARY

REPORT PERIOD

NEW SPRS
OPEN SPRS
SPR DENSITY

JANUARY

80
45
14

FEBRUARY

100
 50
 16

SPR DENSITY WITHIN VARIANCE
OPEN SPRS WITHIN VARIANCE

REPORT STATUS

170

90

75

100

50

192

120

100

60

180
185

110

25 40

0

20

40

60

80

100

120

140

160

180

200

TRR PCA

NEW
SPRS

OPEN
SPRS

CURRENT REPORT

PERIOD

7

13

15

20

6

17

14
15

16

0

5

10

15

20

25

TRR

CU

Figure 3.7.2-1 Software Defect Reports

48

 NOTES : SPR data formats should be capable of supporting quality-oriented reporting and
process-oriented, root causal analysis (e.g., longevity of open SPRs, error injection type, type
of software affected, SPR density by category, etc.). Appendix C contains some guidelines
for structuring SPR collection forms to support these goals. [FLORAC 92] provides
examples of checklists used to construct problem and defect measurement definitions and
specifications. Models are provided for the following SPR attributes: Identification, Problem
Status, Problem Type, Uniqueness, Criticality, Urgency, Finding Activity, Finding Mode,
Date/Time of Occurrence, Problem Status Date, Originator, Environment, Defects Found In,
Changes Made To, Related Changes, Projected Availability, Released/Shipped, Applied,
Approved By, and Accepted By.

SPR data counts should also be used to support efficiency/effectiveness analysis of the
testing program (Section 3.5). Efficiency analysis should include trade-offs on the amount of
effort expended to uncover defects and the value of continued testing within selected code
segments. Effectiveness measures require continued collection of SPR data during PDSS to
calculate test/PDSS defect ratios.

3.7.3 Additional Questions

SPRs may be tracked for any product or work item that has passed through its exit criteria and
was counted as completed by the development progress measures. Other examples of defects
and potential entry/exit criteria include [ROZUM 92]:

• Errors detected during unit-level testing- the work item would be the coding of a unit
and the exit criteria could be successful compilation, unit test, and code inspection.

• Specification components- the work item would be the specific CDRL item and the exit
criterion is its delivery.

• Action Items from reviews- the work item would be the product(s) being reviewed and
the exit criterion is the review.

Based on program specific issues, the COR/Program Manager might also want to consider the
following software defect measurements and partitions :

• priority, severity, or criticality of the defect [MIL-STD-498]

• software language

• development process or activity that caused the defect

• development process or activity that found the defect

• effort expended to close defect (or categories of defects)

Software Defect measurements can be used to help answer the following question :

• Does the quality of the product indicate that the product is ready for release to the
customer/user?

• Will undetected or unresolved problems in the product lead to more problems in the
next life-cycle stage?

• Does the number of SPRs indicate that the software product should be reworked before
proceeding to the next life-cycle stage?

49

• Is the testing activity complete (correlate with test progress metric)?

• Are project personnel addressing the trouble reports in a timely manner?

• Do the types of defects suggest areas for process improvement?

• How does this project compare to others with regard to the number and types of defects
discovered?

• Which CSCIs tend to be more error prone?
• Is the efficiency at the testing program consistent with defect densities?

3.8 Software Effort

3.8.1 Purpose

Software Effort measurements provide Contracting Office Representative(CORs) and
development and post deployment software support personnel with the relationship between
planned and actual staff months (hours) expended. Effort measures allow the Program Manager
to track the contractor’s effort and make inferences about project costs. The Program Manager
tracks the number of staff months (hours) expended monthly starting at contract award and
compares planned with actual level of expenditures. Planned staffing hours are recorded in the
contractor’s proposal and development plans.

3.8.2 Description

 METRIC CATEGORY : Resources - Cumulative Effort

 PURPOSE : Monitors total number of staff-months (hours) expended against the system,
CSCI, Software Units, or specified WBS element.

 INPUT DATA : Number of staff-months (hours)
Cumulative number of staff-months (hours)

 TRACKING PERIOD : Full Life-cycle for each planned activity

 FREQUENCY OF COLLECTION : Monthly

 USAGE : Although effort metrics are historically applied to tune costing models and
establish productivity values by adding projected staff-month data to monthly reports,
discrepancies between planned and actual loading can be analyzed. Figure 3.8.2-1 provides
an example graph with planned staff-month loading overlaid.

 TRIGGERING GUIDELINE : For graphs with projected loading included, 10% difference
between planned and actual loading;

 ACTIONS : Detailed explanation from the developing organization regarding discrepancies
in project personnel assignment;

 SPECIAL DEFINITIONS : Staff-month equates to 153 hours/month;

 NOTES : Software staff includes the engineering and management directly responsible for
software planning/management, requirements definition, design, coding, test, documentation,
configuration management, quality assurance, and maintenance support activities.

50

3.8.3 Additional Questions

To provide better insight into and control over project staff requirements, staff-hours may be
partitioned by:

• Development discipline area (software quality assurance, configuration management,
test and integration, etc.)

• Development activity (analysis, design, implementation, etc.)

• WBS elements

Total effort expended when graphed is usually in the form of a flattened S-curve. The S-curve
reflects an orderly and achievable increase through software requirements analysis and detailed
design, a somewhat constant staffing level, peaking during code and unit test, and an orderly
decrease through integration and test stages. If there is a significant under-expenditure of
planned and actual staff-hours, the contractor may be having problems staffing the contract.
Other possible reasons may include [ROZUM 92]:

• Overestimating the software size : The Program Manager should correlate effort
measures with software size measures. If the actual size data is tracking below the plan
curve, it may indicate that the original sizing estimates were overestimated. True
staffing profiles can then be recalculated using SLOC and productivity data.

• Insufficient development progress: By correlating the effort measures with the
development progress measures, the Program Manager can determine if under-
expenditure of staff hours is causing the development progress measures to track below
the plan.

• Reduction in program functionality: The program manager should correlate effort
measures with the number of modified or deleted program requirements.

• Increasing levels of open problems: If the difference between the number of open and
closed SPRs is increasing, additional staff may be needed or redirected to correct
outstanding defects.

Conversely, if there is significant over-expenditure of staff hours, the contractor may have been
forced to absorb staff members from other projects or introduce staff members early to capture
resources. Other possible reasons for the over-expenditure of staff hours may include:

• Underestimating the size of the software: The Program Manager should correlate effort
measures with software size measures.

• Insufficient development progress: By correlating effort measures with the
development and milestone performance measures, the Program Manager can
determine if the contractor is trying to make up delays by adding staff to the contract.

• Increasing number of defects: By correlating effort measures with the software defects
measures, the Program Manager can determine if the contractor is adding staff to
correct a growing number of SPRs.

• Growth in program functionality: The program manager should correlate effort
measures with number of new, modified program requirements.

• Inability to capitalize on reuse: The program manager should correlate effort measures
with the migration of reused code segments to newly developed code categories and the
subsequent increase in staffing overhead.

51

CURRENT REPORT PERIOD : JANUARY

255

200

255

150

265 270

120

32
40

60
65

80

265265

180

135

50
35

69

90

280 285

130

0

50

100

150

200

250

300

PERSON
STAFF

MONTHS

PSM PLANNED

PSM ACTUAL

CURRENT REPORT
PERIOD

REPORT PERIOD JANUARY

PSM ACTUAL
PSM PLANNED

285
270

PROGRAM: GLORY

INITIAL DEVELOPMENT INITIAL PDSS

Figure 3.8.2-1 Cumulative Effort

52

Based on differences between planned and actual effort data, it may be beneficial to collect
personnel specific measures. One example measure is the number of personnel expected,
number if personnel actual, and staff turnover. Staff turnover data may reveal potential schedule
and performance problems despite reasonable total effort profiles.

3.9 Software Problem Resolution Effort

3.9.1 Purpose

Software Problem Resolution Effort measurements provide Contracting Office Representative
(CORs) and development and post deployment software support personnel with an indicator of
the average effort required to resolve SPRs. Although average resolution time increases as
testing proceeds from the Unit-level to the CSCI integration and test stages, unbounded increases
suggest problems with Unit-level test processes or the definition / use of software interfaces.

3.9.2 Description

 METRIC CATEGORY : Quality - Problem Resolution Effort

 PURPOSE : Monitors cumulative average effort required to resolve software problem
reports;

 INPUT DATA : Number of resolved software problem reports
Time in hours to resolve related problems

 TRACKING PERIOD : Software Integration and Test through Post Deployment Support
for each planned activity

 FREQUENCY OF COLLECTION : Monthly

 USAGE : As the Software Units/CSCIs are integrated, test personnel document errors
encountered while executing formal test procedures through software problem reports. An
example software problem report is given in [HAGER 89]. During the integration testing,
test procedures exercise the interfaces to an increasing number of software elements.
Modifications required at this level will require more engineering time to resolve than
previously performed Unit-level testing. However, it is expected that the slope of the
resolution time should “flatten” and stabilize. Constantly increasing positive slopes, as
shown in Figure 3.9.2-1, suggest problems with interface definition and implementation.
Figure 3.9.2-2 and Figure 3.9.2-3 show alternative formats for displaying SPR reports.

 TRIGGERING GUIDELINE : None

 ACTIONS : N/A

 SPECIAL DEFINITIONS : None

 NOTES : To provide more visibility to the processes contributing to resolution times, it may
be necessary to graph resolution effort data by work category (e.g., redesign, Unit-level
testing, CSCI Integration and Test stage, System Test stage, etc.).

53

3.9.3 Additional Questions

Software Problem Resolution Effort measures provide an indicator of a contractor’s ability to
adequately/successfully test a system. Problem Resolution Effort measurements can be used to
help answer the following questions.

• Are test plans/procedures adequate to exercise program segments?
Are specific CSCIs/Software Units generating defects requiring significantly more
resolution time, thus requiring more program visibility (schedules, specifications, test
structures, etc.)?

• Does the SPR average resolution time suggest problems with definition or use of
specific interfaces?

• Does the SPR average resolution time indicate schedule slippage and the necessity of a
replanning effort at the program level (schedule and resources)?

54

CURRENT REPORT PERIOD : FEBRUARY

4.6

4.1

4

4.1
4.2

4.4

4.50

4
3.8

4

3.6

4.1

3.1

2.4

2.2
2.3

3

1.8

2.3

2.8

3.3

3.8

4.3

4.8

AUG SEP OCT NOV DEC JAN FEB MAR APR MAY JUN SEP OCT NOV DEC JAN FEB

CUMULATIVE
AVERAGE HOURS

CURRENT REPORT
PERIOD

INITIAL DEVELOPMENT INITIAL PDSS

Figure 3.9.2-1 Cumulative Average SPR Resolution Effort

55

Start 1-
Oct-
95

1-
Jan-
96

1-
Apr-
96

1-
Jul-
96

1-
Oct-
96

F0

100

200

300

400

500

600

700

800

Num

Start 1-
Oct-
95

1-
Jan-
96

1-
Apr-
96

1-
Jul-
96

1-
Oct-
96

F

CURRENT REPORT PERIOD

Fixed Deferred Duplicate Cancelled Open S

Figure 3.9.2-2 Closed SPRs

56

CURRENT REPORT PERIOD

1

0.1

4.2
3.8

2

1
0.7

0.2
0.5

0.2

2.7

0.05

8

0

6.00

8

9 9

8

6

4

2

5.5

000.1

1

0

1

2

3

4

5

6

7

8

9

10

System Design Developmental Test &
Evaluation

SPRs
per KSLOC

Design Software Documentation Total T

Computer Program Test &
Evaluation

Subsytem Design Subsytem Test

Code & Unit Test System Test

Figure 3.9.2-3 Valid SPRs By Phase Found and Category

57

4. REFERENCES

[AIRF 86] Department of the Air Force, Air Force Systems Command Software
 Management Indicators (AFSC Pamphlet 800-43) . Washington, DC,
Andrews Air Force Base, 1986.

[BASILI 84] Basili, V. R., and Weiss, D. M. “A methodology for collecting valid
software engineering data.” IEEE Trans. Software Eng. SE-10 (6 1984):
pp. 728-738.

[BAUMERT 92] Baumert, J.H., and McWhinney, M.S., Software Measures and the
 Capability Maturity Model . Software Engineering Institute, Technical
Report, CMU/SEI-92-TR-25.

[BETZ 91] Betz, H., and O’Neill, P., “Army Software Test and Evaluation Panel
(STEP) Software Metrics Initiatives Report (Draft).” March 1991.

[BOEHM 81] Boehm, B., Software Engineering Economics . Englewood Cliffs, New
Jersey: Prentice-Hall, 1981.

[CHIDAMBER 94] Chidamber, S.R. and Kemerer, C. F., “A Metrics Suite for Object Oriented
Design”, IEEE Trans. on Software Engineering , vol. 20, No. 6, pp. 476-
93, June 1994.

[CHMURA 90] Chmura, L. J., Norcio, A. J., and Wicinski, T. J. “Evaluating Software
Design Processes by Analyzing Change Data Over Time.” IEEE Trans. on
 Soft. Eng . 16, 7, pp. 729-740, 1990.

[CONSORTIUM 94] Software Measurement Guidebook , SPC-91060-CMC, August 1994.

[DECKER 91] Decker, W., Baumert, J., Card, D., Wheeler, J., and Wood, R., SEAS
 Software Measurement System Handbook . (CSR/TR-89/6166), Beltsville,
MD, Computer Sciences Corporation, 1991.

[DEMARCO 82] DeMarco, T., Controlling Software Projects . New York : Yourdon Press,
1982.

[DOD2167A 88] DoD-STD-2167A, Military Standard, Defense System Software
 Development , 29 February, 1988.

[FENTON 91] Fenton, N.E., Software Metrics: A Rigorous Approach , Chapman and
Hall, New York, New York, 1991.

[FLORAC 92] Florac, W., Software Quality Measurement: A Framework for Counting
 Problems and Defects . Software Engineering Institute, Technical Report,
CMU/SEI-92-TR-22.

[GOODMAN 93] Goodman, Paul, Practical Implementation of Software Metrics . McGraw-
Hill, Inc., 1993.

[GOETHERT 92] Goethert, W. B., Bailey, E. K., and Busby, M. B., Software Effort and
 Schedule Measurement: A Framework for Counting Staff-Hours and

58

 Reporting Schedule Information . Software Engineering Institute,
Technical Report, CMU/SEI-92-TR-21.

[GRADY 87] Grady, R. and Caswell, D., Software Metrics: Establishing a Company-
 Wide Program . Englewood Cliffs: Prentice-Hall, Inc., 1987.

[GRADY 92] Grady, R., Practical software metrics for project management and process
 improvement . Englewood Cliffs: Prentice Hall, Inc., 1992.

[HAGER 89] Hager, J.A., “Software Cost Reduction Methods In Practice: A Post-
Mortem Analysis.” IEEE Trans. on Soft. Eng ., December 1989.

[HIHN 91] Hihn, J., and Habib-agahi, H. “Cost Estimation of Software Intensive
Projects: A Survey of Current Practices,” 13th International Conference on
Software Engineering, Austin, Tx, USA, May 1991.

[HUMPHREY 89] Humphrey, W., Managing the Software Process . Reading, MA., Addison-
Wesley Publishing Company, 1989.

[HUMPHERY 95] Humphery, W., A Discipline for Software Engineering . Reading, MA.,
Addison-Wesley Publishing Company, 1995.

[IEEE 92] Standard for Software Productivity Metrics . Washington, D.C., The
Institute of Electrical and Electronics Engineers.

[JONES 94] Jones, Capers. “Software Metrics: Good, Bad, and Missing” , Computer ,
vol. 27, pp. 98-100, September 1994.

[JONES 95] Jones, Capers.

[KIM 93] Kim, E. M., An experimental evaluation of OOP complexity metric:
SOMEFOOT, Master thesis, Chonbuk National University (1993).

[KIM 94] Kim, E.M. and Chang, O.B. and Kusumoto, S. and Kikuno, T. "Analysis
of Metrics for Object-Oriented Program Complexity", Proceedings - IEEE
 Computer Society’s International Computer Software & Applications
 Conference , p 201-207, 1994.

[LANDIS 90] Landis, L., McGarry, F., Waligora, S., Pajerski, R., and Start, M.,
 Manager’s Handbook for Software Development - Revision 1 . (SEL-84-
101), Greenbelt, MD, NASA Goddard Space Flight Center, 1990.

[LARANJEIRA 90] Lanranjeira, Luiz A. “Software Size Estimation of Object-Oriented
Systems.” IEEE Transactions on Software Engineering , Vol. 16, No. 5,
pp. 510-522, May 1990.

[LI 93] Li, W. and Henry, S. “Object-Oriented metrics that predict
maintainability,” The Journal of Systems and Software , vol. 23, pp. 111-
122, 1993.

[LORENZ 93] Lorenz, M., Object-Oriented Software Development: A Practical Guide ,
Prentice Hall, Englewood Cliffs, New Jersey, 1993.

59

[LORENZ 94] M. Lorenz, J. Kidd, Object-Oriented Software Metrics , Prentice Hall,
Englewood Cliffs; 1994.

[MATSON 94] Matson, Jack E. and Barrett, Bruce E., and Mellichamp, Joseph M.,
“Software Development Cost Estimation Using Function Points.” IEEE
 Trans. on Soft Eng. , Vol. 20, No. 4, April 1994.

[MCCABE 89] McCabe, T.J., and Butler, C.W., “Design Complexity Measurement and
Testing.” Communications of the ACM , December 1989.

[MCCABE 95] McCabe’s brochures 1995.

[MURINE 83] Murine, G. E., “Improving Management Visibility Through the Use of
Software Quality Metrics.” Proceedings from IEEE Computer Society’s
 Seventh International Computer Software and Application Conference ,
New York, N.Y., 1983.

[NSAM 81] NSA/CSS Software Product Standards Manual . NSAM 81-3/DoD-STD-
1703, April 1987.

[PAULK 91] Paulk, M., Curtis, W., and Chrissis, M., Capability Maturity Model For
 Software . Software Engineering Institute, Technical Report, CMU/SEI-
91-TR-24.

[ROZUM 92] Rozum, J. A., Software Measurement Concepts for Acquisition Program
 Managers . Software Engineering Institute, Technical Report, CMU/SEI-
92-TR-11.

[SCHULTZ 88] Schultz, H.P., Software Management Metrics . MITRE Corporation, May
1988.

[SHEPPERD 93] Shepperd, Martin, Software Engineering Metrics Volume 1: Measures and
 Validations . McGraw-Hill, Inc., 1993.

[SHEPPERD 94] Shepperd, Martin, and Ince, D.C., “A Critique of Three Metrics,” Journal
 of Systems Software , 26, pp.197-210, 1994.

[SYMONS 91] Symons, Charles R., Software Sizing and Estimating: Mk II FPA
 (Function Point Analysis) . John Wiley & Sons. 1993.

[VERNER 92] Verner, June and Tate, Graham “A Software Size Model.” IEEE Trans. on
Soft. Eng., Vol. 18, No. 4, April 1992.

[YEH 93] Yeh, Hsiang-Tao, Software Quality Process . Mc Graw-Hill, Inc., 1993.

[WALSH 79] Walsh, T.J., “Software Reliability Study Using A Complexity Measure.”
 Proceedings of the National Computer Conference , New York: AFIPS,
1979.

[WILLIAM 93] Williams, John D. “Metrics for Object Oriented Projects” OOPSLA ‘93
Workshops Program: Process and Metrics for Object-Oriented Software
Development , Vancouver, Canada, 1993.

60

[ZUSE 91] Zuse, Horst. Software Complexity: Measures and Methods., Walter de
Gruyter, 1991.

61

APPENDIX A : ACRONYMS

 AC Actual Complexity
 APD Access to Public Data
 BCWP Budgeted Cost Of Work Performed
 BCWS Budgeted Cost Of Work Scheduled
 CC Cyclomatic Complexity
 CDR Critical Design Review
 CDRL Contract Data Requirements List
 CI Code Inspection
 COR Contracting Office Representative
 COTS Commercial Off-the-Shelf
 CSCI Computer Software Configuration Item
 DC Design Complexity
 DI Design Inspection
 DOD Department of Defense
 DRR Design Ready Review
 FCA Functional Configuration Audit
 FQT Formal Qualification Test
 HW Hardware
 IC Integration Complexity
 IDD Interface Design Document
 IEEE Institute of Electrical and Electronics Engineers
 IRS Interface Requirements Specification
 IV&V Independent Verification and Validation
 LOCM Lack of Cohesion in Methods
 MDC Module Design Complexity
 NOC Number of Children
 OT&E Operational Test and Evaluation
 O-O Object-Oriented
 PCA Physical Configuration Audit
 PDL Program Design Language
 PDR Preliminary Design Review
 PM Project Manager
 PPPD Percentage of Public and Protected Data
 QA Quality Assurance
 RFP Request for Proposals
 SDD Software Design Document
 SDR System Design Review
 SEI Software Engineering Institute
 SLOC Source Line Of Code
 SOW Statement Of Work

62

 SPR Software Problem Report, or alternatively, Special Procurement Request
 SRS Software Requirements Specification
 TRR Test Readiness Review
 WBS Work Breakdown Structure

63

APPENDIX B : TERMS

 Anomaly - Anything observed in the documentation or operation of software that deviates from
expectations based on previously verified software products or reference documents.

 Baseline - A set of verifiable products placed under configuration management, that represent a
benchmark in the system development process.

 Budgeted Cost of Work Scheduled - cost estimates for individual work packages as determined
by engineering inputs and grouped via a Work Breakdown Structure.

 Budgeted Cost of Work Performed - cost actuals for individual work packages completed as
determined by monthly cost accounting and the Work Breakdown Structure

 Causal Analysis - The analysis of defects to determine their underlying root cause.

 Computer Software Configuration Item (CSCI) - A configuration item for software [MIL-STD-
498].

 Software Unit - A separately, testable element, specified in the design of a computer software
component [MIL-STD-498].

 Code Inspection - A review by peers and management to examine code for conformance with
program standards, satisfaction of the intended design, detection of logic errors or
misinterpretation of the design specification.

 Cyclomatic Complexity - The number of unique logical paths in a software element. Cyclomatic
complexity values correlate directly with the number of required test cases needed to verify the
logical paths.

 Defect - (1) Any unintended characteristic that impairs the utility or worth of an item, (2) Any
kind of shortcoming, imperfection or deficiency, (3) Any flaw or imperfection in the software
work product or software process.. Examples include omissions and imperfections found in
software during definition, design, implementation, and testing.

 Design Inspection - A formal review by peers and management to examine software design for
conformance to program standards, satisfaction of allocated requirements, detection of design
errors or misinterpretation of requirements, assessment of design simplicity, modularity and
testability, and determining adequacy of test plans.

 Design Ready Review - a formal review by peers and management to determine if a designer has
all the information necessary to complete a detailed design, and understands the Unit
requirements and file/inter- Unit interfaces.

 Failure - The inability of a system or component to perform its required functions within the
specified performance requirements.

 Formal Review - A formal meeting at which a product is presented to the end-user, a customer,
or other interested parties for comment and approval [MIL-STD-498].

 Integration Ready Review - A formal review of an implemented and tested Unit for the purpose
of determining if the unit is ready to be turned over to the integration and test function.

 Phase (Stage) - An increment of the system development life-cycle which has clearly defined
inputs, activities, and products as described by the engineering methodology.

 Program Design Language (PDL) - A design tool used at any required level of detail to facilitate
the translation of functional specifications into computer instructions.

 Software Problem Report - A document (electronic or hard copy) used to recognize, record,
track, and close anomalies detected in the software and its accompanying documentation.

64

 Software Problem Report Density - cumulative number of software problem reports normalized
by program-defined blocks of source code (e.g., SPRs per 1000 source lines of code).

 Source Line Of Code - Instructions created by project personnel and translated into machine
code; includes job control language, data declarations, and format statements; it excludes
comment statements [IEEE 92].

 Unit - A software work package to which the satisfaction of requirements can be traced and
which can be designed and developed by one engineer.

 Work Breakdown Structure - a mechanism for organizing the program work to be accomplished
into a hierarchical structure and for defining discrete tasks to be performed in fulfilling the
technical and management requirements of the program.

 Staff Hour - An hour of time expended by a member of the program staff

 Staff Month - Number of staff hours per month as defined in program profile checklists

65

APPENDIX C : SOFTWARE DEFECT REPORT GUIDELINES

1 Introduction

A key component of any software measurement program targeted at establishing and maintaining
control over the development and maintenance of a software product is the collection and
analysis of software problem and defect data. Software defect measurements have direct
application to: estimating, planning, and tracking the various software development processes, to
determining the status of corrective action, to measuring and improving the software
development process, and to the extent possible, predicting remaining defects or failure rates
[MURINE 83]. By measuring problems and defects, program managers obtain the data
necessary to control such program attributes as:

Quality: The number and frequency of problems and defects associated with a software
product are inversely proportional to the quality of the software. Software problems
and defects are among the few direct measurements of software process and product
quality. These measurements allow a program manager to quantitatively describe
trends in defect or problem discovery, repairs, process and product imperfections.

Cost: Rework is a significant cost factor in software development and maintenance. The
number of problems and defects associated with the product directly contributes to this
cost. Measurement of the problems and defects helps a program manager understand
where and how the problems and defects occur and provides insight to the methods of
detection, prevention, and prediction.

Schedule: Program managers can use problem and defect measurements in tracking
project progress, identifying process inefficiencies, and forecasting obstacles that will
jeopardize schedule commitments.

2 Problem and Defect Reporting

To establish a software measurement environment, the software organization must define a data
collection process and recording media. Typically, Software Problem Reports (SPR) are the
mechanism used to collect data about problems and defects. Configuration Management report
[LONDON 95] is a typical example of SPR reporting requirements and procedures. SPRs give
rise to additional measurement communication issues. Problem reports generated by “finding
activities” (e.g., inspections, formal reviews, testing, etc.) are typically tuned to the needs of the
life-cycle activity and vary in content and format. The problems are recorded and reported at
different points in time, in batches or continuously, by different organizations (developer and
customer), by people with varying degrees of understanding of the software product. Often the
data is recorded in separate databases or captured with non-compatible record-keeping
mechanisms and with very little concern for root-causal analysis requirements. A common
format and language is required to bridge these differences and provide a consistent basis for
communicating. Problem report checklists [FLORAC 92] are required to record problem and
defect recording, reporting, and definition assumptions.

3 Software Problem Report Attributes

Despite the variances in the way software problems are recorded and reported, there are many
similarities among the reports. This section provides some guidelines for the type of information
included on SPR forms [FLORAC 92]. Program-specific assumptions should be recorded via
checklists and recorded in standard program planning documentation. The following attributes

66

provide a basis for communicating, descriptively and prescriptively, the meaning of problem and
defect measurements.

 Attribute Question Answered

Identification What software product is involved?
Finding Activity What process discovered the problem or defect?
Finding Mode How was the problem or defect found?
Criticality How critical or severe is the problem or defect?
Problem Status What work needs to be done to dispose of the

problem?
Problem Type What is the nature of the problem ? If a defect,

what kind?
Uniqueness What is the similarity of this problem to previous

problems or defects?
Urgency What priority is associated with the problem?
Environment Where was the problem discovered?
Timing When was the problem discovered? When was it

reported? When was it corrected?
Originator Who reported the problem?
Defects Found In What software artifacts caused or contained the

defect?
Changes Made To What software artifacts were changed to correct

the defect?
Projected Availability When are changes expected?
Released/Shipped What configuration level contains the changes?
Applied When was the change made to the baseline

configuration?
Approved By Who approved the resolution of the problem?
Accepted By Who accepted the problem resolution?

4 Attribute Descriptions

 Problem ID : This attribute serves to uniquely identify each problem for reference purposes.

 Product ID : This attribute identifies the software product to which the problem refers. It
should include the Version and Release ID for released products, or the Build ID for products
under development.

 Problem Status : This attribute refers to a point in the problem analysis and corrective action
process where some program-specified progress criteria have been met. The problem status is of
interest to the program manager because it reveals information about the development
organization’s ability to resolve and dispose of the reported problems. The recognition or
opening of a problem is based on the existence of data describing the event. As the investigative
work proceeds, more data is collected about the problem, including the information that is
required to satisfy the issues raised by the problem. It is the existence of this data that is used as
a set of criteria to satisfy moving from status OPEN to status CLOSED. Typical Problem Status
attributes might include:

67

 Open : The problem is recognized and some level of investigation and action will be
undertaken to resolve it.
 Recognized : Validity of problem report data has been established and sufficient data has
been collected to permit an evaluation of the problem to be made.
 Evaluated : Sufficient data has been collected by investigation of the reported problem
and the various software artifacts to at least determine the problem type. Depending on the
software organization, the amount of data required to satisfy the criteria for this state may
vary significantly.
 Resolved : The problem has been reported and evaluated, and sufficient information is
available to satisfy the rules for resolution. Each organization will have its own set of
processes or activities related to resolution (described in program planning documentation).
These processes may include the proposed change, change control approval, and a root
causal analysis of the problem.
 Closed : The investigation is complete and the action required to resolve the problem has
been proposed, accepted, and completed to the satisfaction of all involved. In some cases,
the problem report will be recognized as invalid as part of the recognition process and
closed immediately.

 Problem Type : This attribute is used to assign a value to the problem that will facilitate
the evaluation and resolution of the reported problems. It is used to classify the problems into
one of several categories to support problem resolution and ultimately root-causal analysis.
Examples of Problem Type fields include:

 Requirements Defect : A mistake made in the definition or specification of the customer
needs for a software product. This includes defects found in functional specifications;
interface, design, and test requirements; and program deliverable requirements
specifications.
 Design Defect : A mistake made in the design of a software product. This includes
defects found in functional descriptions, interfaces, control logic, data structures, error
handling, conformance with design standards, and program deliverable design
specification.
 Code Defect : A mistake made in the translation of design specifications to code
segments. This includes defects found in program logic, interface handling, data
definitions, computation, adherence to program specified coding standards, and program
deliverable code specifications.
 Document Defect : A mistake made in a software product publication. This does not
include mistakes made to requirements, design, or coding documents.
 Test Case Defect : A mistake made during procedural definition or execution of test
structures.

Examples of non-software oriented Problem Type fields include:

 Hardware Problem : A problem due to a hardware malfunction that the software does not,
or cannot, provide fault tolerant support.
 Operating System Problem : A problem that the operating system(s) in use has
responsibility for creating or managing.
 User Error : A problem due to user misunderstanding or incorrect use of the software.
 Operations Error : A problem caused by an error made by the computer system
operational staff.

68

 New Requirement/Enhancement : A problem that describes a new requirement or
functional enhancement that is outside the scope of the software product baseline
requirements.
 Undetermined Problem : Information provided with the problem is not sufficient to assign
a problem type.

 Uniqueness : This attribute differentiates between a unique problem or defect and a duplicate.
Possible values are:

 Duplicate : The problem or defect has been previously discovered.
 Original : The problem or defect has not been previously reported or discovered.
 Value Not Identified : An evaluation has not been made.

 Priority : Provides a measure of the impact a problem has on developed software or customer
mission. Criticality is usually measured with several levels, the most critical being mission or
life-threatening, and the least being a minor operational impact [MIL-STD-498]. The assigned
priority determines the order in which problems are evaluated, resolved, and closed.

 Finding Activity : Refers to the activity, process, or operation taking place when the problem
was encountered. Instead of using the program development phases or stages to describe the
activity, specific development activities should be used. An example of a Finding Activity
hierarchy checklist is:

Finding Activity
Synthesis of:

Requirements
Design
Code
Test Procedures
User Publications

Inspections of:
Requirements
Software Architecture
Unit Detailed Design
Operational Documentation
Test Procedures

Formal Review of:
Program Plans
Requirements
Preliminary Design
Detailed Design
Test Readiness
Formal Qualification

Testing
Planning
Unit-level
CSCI-level
Subsystem Integration and Test
System Integration and Test
Customer Acceptance

69

Customer Support
Deployment
Installation
Operation

 Finding Mode : This attribute is used to identify whether the problem was discovered in an
operational environment or in a non-operational environment. The values for this attribute are:
Dynamic or Static. Dynamic attributes describe problems or defects found during the operation
or execution of the computer program. Static attributes describe problems found in a non-
operational mode. Examples include problems found during formal reviews, peer inspections, or
other activities that do not require execution of the software.

 Date/Time of Occurrence : The date/time data is useful in establishing and predicting software
reliability, failure rates, and numerous other time-related measurements. It is also necessary to
recreate problems that are date or time-of-day dependent.

 Problem Status Dates : These attributes refer to the date on which the problem report was
received or logged. The data is used to determine status, problem age, and problem arrival rate.

 Originator : The originator attribute provides the information needed by the problem analyst to
determine the originating person, organization, or site. This data is useful in determining if a
particular problem is location sensitive or in eliminating a problem based on the peculiarities of
the operating environment. Additionally, the originator field could be used as a discriminator for
aggregating problem report counts.

 Environment : This attribute provides information needed by the analyst to determine if a
problem is uniquely related to an operating environment. This information is important if the
analyst is to accurately recreate the problem. This data is also useful in determining if a
particular operating environment contributes significantly more reported problems.

 Defects Found In : This attribute records the software CSCI and/or the Units containing defects
causing a problem. This information is useful when determining the reliability of a particular
software element or the reliability of a software configuration level following a new release.

 Changes Made To : This attribute identifies the software Unit(s) changed to resolve the
discovered problem or defect.

 Projected Availability : Identifies the Date when the product fix is committed to be available
and the particular Release/Build designator.

 Released / Shipped : This field contains the date the product fix is released and the Release or
Build ID in which the product fix is included.

 Approved By : Signatures indicating that the product modifications have been approved by
appropriate project management.

 Accepted By : Signatures indicating that the product modifications has been accepted by the
appropriate project management.

70

THIS PAGE INTENTIONALLY LEFT BLANK

71

APPENDIX D : OBJECT-ORIENTED METRICS

Appendix D contains additional examples of potentially useful object-oriented measurements.
Although many of the measures show promise, their near term use in development programs is
limited until the empirical data necessary to demonstrate their value is collected.

Table D-1 provides a summary of the object-oriented categories and the associated measures.
Immediately following is a list of definitions for the terms used within the table. Detailed
descriptions of the measures, recommended triggering levels, and potential usage and
interpretation are found in [LORENZ 93], [LORENZ 94], and [CHIDAMBER 94].

TABLE D-1 OBJECT ORIENTED METRICS

CATEGORY METRIC
Application Size Number of scenario

Number of keys
Number of support classes
Average number of support classes

Staffing Size Person-days per class
Average person-days per class
Classes per developer

Scheduling Number of major iterations
Number of contracts completed

Method Size Number of message sends
Source lines of code
Average method size

Method Internals Method complexity
Strings of message sends
Number of parameters

Class Size Number of public instance methods
Number of instance methods
Average number of instance methods per class
Number of class methods
Number of class variables

Class Inheritance Class hierarchy nesting level
Multiple inheritance nesting level

Method Inheritance Number of methods overridden by a subclass
Number of methods inherited by a subclass
Number of methods added by a subclass
Number of class extension through specialization

Class Externals Class coupling
Number of times a class is reused
Number of classes/methods thrown away
Number of class-to-class relationships

72

TABLE D-1 OBJECT ORIENTED METRICS (Continued)

CATEGORY METRIC
Class Internals Class cohesion

Global usage
Instance variable usage
Average number parameters per method
Percentage of functionally oriented code
Average number of comment lines per class/method
Average number of commented methods
Number of problem reports per class or contract

SPECIAL DEFINITIONS

• Class - a template that defines the structure and capabilities of an object instance
• Class Hierarchy - a tree structure that organizes class inheritance
• Class Hierarchy Nesting - the number of subclassing levels from the top in the class

hierarchy
• Class Variables - localized globals that provide common objects to all the instances of a

class
• Cohesion - measure of the internal binding within a class or object
• Contract - abstraction of a group of related public responsibilities provided by subsystems

and classes to their clients
• Coupling - measure of the external binding between classes or objects
• Instance Variables - name that allows one object or instance to refer to another one
• Key Classes - class central to the application domain being automated
• Message Sends - communication between objects via messages; request of service from

another object through message sends
• Method - a class behavior or service that is executed when an object receives a message
• Method Complexity - a measure of the amount of work and number of decisions being made

by a method
• Method Override - creating a method in a class with the same name as a method in one of its

superclasses
• Method Size - a measure of the volume of a method based on attributes such as number of

message sends and types of message sends
• Scenario Scripts - sequence of steps made by the user and system to accomplish a certain

task
• Specialization - an extension of the behavior of a type of object
• Support Classes - classes that provide basic services or interfaces capabilities to the key

classes
• Private methods - method that exists to perform a class function but is not available to other

classes
• Public Instance Methods in a Class - methods that are available as services to other classes
• Public Methods - methods that is readily available to other classes and are grouped into

contracts

73

INDEX

—A—
accepted by, 69
access to public data, 28
acknowledgments, 6
acronyms, 61
Actions, 34

functionally-oriented complexity, 25
object-oriented complexity metrics, 28
software builds, 42
software defect reporting, 46
software development, 34
software effort, 49
software problem resolution effort, 52
software schedule, 32
software size, 17
software testing, 41

actual
complexity, 24, 25
cost of work performed, 32

Additional Questions
object-oriented complexity metrics, 29
software builds, 44
software defect reporting, 48
software development, 37
software effort, 50
software problem resolution effort, 53
software schedule, 32
software testing, 41

applicability, 4
approved by, 69
aspects of program development, 11
Average CSCI Complexity

Figure 3.2.2-2, 23
Average Software Unit Complexity

Figure 3.2.2-1, 22

—B—
background, 7
benefits of measurement programs, 7
budgeted cost of work scheduled, 32

—C—
changes made to, 69
class, 28
class hierarchy nesting level, 28
Closed SPRs

Figure 3.9.2-2, 55
code defect, 67
common guidelines, 9
computer software configuration Item, 4
cost, 65
critical design review, 4
CSCI cyclomatic complexity, 25
Cumulative Average SPR Resolution Effort

Figure 3.9.2-1, 54

cumulative effort
Figure 3.8.2-1, 51

cyclomatic complexity, 21, 25

—D—
date/time of occurrence, 69
defect, 46
defects found in, 69
Description

software builds, 42
software defect reporting, 44
software effort, 49
software problem resolution effort, 52
software size, 14
software testing, 38

design
complexity, 24, 25
defect, 67

development, 3
document defect, 67

—E—
effective measurement program, 7
efficiency, 48
effort, 2
encapsulation, 26, 27, 28
environment, 69
estimated schedule, 32
external

inputs, 15
inquiries, 15
interfaces, 15
outputs, 15

—F—
fan in, 27, 28
Figure 1.1-1 Metrics/Phase Coverage, 5
Figure 3.1.2-1 Software Size, 16
Figure 3.1.2-2 Function Point Monthly Report, 18
Figure 3.2.2-1 Average Software Unit Complexity, 22
Figure 3.2.2-2 Average CSCI Complexity, 23
Figure 3.3.2-1 Software Schedule, 31
Figure 3.4.2-1 Software Development Progress, 35
Figure 3.4.2-2 Software Development Progress (Object-

Oriented), 36
Figure 3.5.2-1 Software Test Progress, 40
Figure 3.6.2-1 Software Build Progress, 43
Figure 3.6.2-2 Software Class/Build Progress, 45
Figure 3.7.2-1 Software Defect Reports, 47
Figure 3.8.2-1 Cumulative Effort, 51
Figure 3.9.2-1 Cumulative Average SPR Resolution Effort,

54
Figure 3.9.2-2 Closed SPRs, 55
Figure 3.9.2-3 Valid SPRs By Phase Found and Category,

56
Figure 3-1 Metric Template and Field Descriptions, 12

75

Figure 3-2 Generic Life-Cycle Metrics Report Format, 13
finding

activity, 68
mode, 69

Frequency of Collection
functionally-oriented complexity, 21
object-oriented complexity metrics, 27
software builds, 42
software defect reporting, 46
software development, 33
software effort, 49
software problem resolution effort, 52
software schedule, 30
software size, 14
software testing, 39

function points, 15
- Figure 3.1.2-2, 18

functionally - oriented complexity metrics, 20

—G—
Generic Life-Cycle Metrics Report Format

Figure 3-2, 13
global data complexity, 24, 25

—I—
inheritance, 26, 27, 28
Input Data

functionally-oriented complexity, 20
object-oriented complexity metrics, 26
software builds, 42
software defect reporting, 46
software development, 33
software effort, 49
software problem resolution effort, 52
software schedule, 30
software size, 14
software testing, 38

integration complexity, 24, 25
internal files, 17

—L—
lack of cohesion in methods, 28

—M—
Measurements

functionally-oriented complexity, 20
object-oriented complexity metrics, 26

Metric Category
functionally-oriented complexity, 20
object-oriented complexity metrics, 26
software builds, 42
software defect reporting, 44
software development, 33
software effort, 49
software problem resolution effort, 52

software schedule, 30
software testing, 38

Metrics Template and Field Descriptions
Figure 3-1, 12

Metrics/Phase Coverage
Figure 1.1-1, 5

MIL-STD-498, 11
MITRE Corporation, 3
module design complexity, 21, 25

—N—
new code counts, 15
new requirement/enhancement, 68
Notes

functionally-oriented complexity, 25
object-oriented complexity metrics, 29
software builds, 44
software defect reporting, 48
software development, 34
software effort, 49
software problem resolution effort, 52
software schedule, 32
software size, 17
software testing, 41

number of children, 27, 28

—O—
object, 28

cohesion, 29
coupling, 29
object-oriented complexity metrics, 26
oriented, 29

operations error, 67
organization, 4
organizational techniques, 8
originator, 69
over-expenditure of staff hours, 50

—P—
percentage of public and protected data, 28
physical configuration audit, 4
polymorphism, 26, 29
post deployment software support, 3, 11
preliminary design review, 4
priority, 68
private, 29
problem

and defect reporting, 65
ID, 66
resolution effort, 3
status, 66
type, 67
undetermined, 68

problem status dates, 69
product ID, 66
progress, 1, 3

76

- development, 33
- software builds, 42
- testing, 38

projected availability, 69
public, 29
Purpose

functionally-oriented complexity, 20
object-oriented complexity metrics, 26
software builds, 42
software defect reporting, 44, 46
software development, 33
software effort, 49
software problem resolution effort, 52
software schedule, 30
software size, 14
software testing, 38

—Q—
quality, 1, 2, 27, 28, 65

- problem resolution effort, 52

—R—
references, 57
released / shipped, 69
reporting, 6
requirements defect, 67
resources, 1, 2

- size, 14

—S—
schedule, 65
scope, 3
selection criteria, 4
size, 2
sizing templates, 14
SLOC. See source line of code
software

build
indications, 44

build progress - 3.6.2-1, 43
builds, 3, 42
class/build progress - Figure 3.6.2-2, 45
complexity, 20
defect questions, 48
defect report guidelines, 65
defect reporting, 44
defect reports - Figure 3.7.2-1, 47
defects, 2
development, 33
development drogress (Object-Oriented) - Figure 3.4.2-

2, 36
development progress - Figure 3.4.2-1, 35
effort, 49
measurement process concepts, 7
measures, 11
problem report, 46

problem report attribute descriptions, 66
problem report attributes, 65
problem resolution effort, 52
problem resolution effort questions, 53
requirements review, 4
schedule, 30
schedule - Figure 3.3.2-1, 31
size, 14
size - Figure 3.1.2-1, 16
test progress - Figure 3.5.2-1, 40
testing, 38
testing indications, 41
testing questions, 41
unit cyclomatic complexity, 25

Software Engineering Institute, 3
software staff, 49
source line of code, 8, 14
Special Definitions

functionally-oriented complexity, 25
object-oriented complexity metrics, 28
software builds, 44
software defect reporting, 46
software development, 34
software effort, 49
software problem resolution effort, 52
software schedule, 32
software size, 17
software testing, 41

special procurement requests, 6
SPR

data formats, 48
Density, 46

standard template, 11
strategic objectives, 1
system

design review, 4
requirements review, 4

—T—
Table 1-1. The Metrics, 2
terms, 63
test

case defect, 67
effectiveness, 41
efficiency, 39
readiness review, 4

testing, 3
Tracking Period

functionally-oriented complexity, 21
object-oriented complexity metrics, 27
software builds, 42
software defect reporting, 46
software development, 33
software effort, 49
software problem resolution effort, 52
software schedule, 30
software size, 14
software testing, 39

77

Triggering Guideline
functionally-oriented complexity, 24
object-oriented complexity metrics, 28
software builds, 42
software defect reporting, 46
software development, 34
software effort, 49
software problem resolution effort, 52
software schedule, 32
software size, 17
software testing, 41

—U—
uniqueness, 68
unit development folders, 8
Usage

functionally-oriented complexity, 21
object-oriented complexity metrics, 27
software builds, 42
software defect reporting, 46
software development, 33
software effort, 49
software problem resolution effort, 52
software schedule, 30
software size, 14
software testing, 39

user error, 67

—V—
Valid SPRs By Phase Found and Category

Figure 3.9.2-3, 56

—W—
Why Use Software Measurement, 7

79

THIS PAGE INTENTIONALLY LEFT BLANK

